
Abstract: We support Enlightenment Bayesianism’s commitment to
grounding Bayesian analysis in empirical details of psychological and
neural mechanisms. Recent philosophical accounts of mechanistic
science illuminate some of the challenges this approach faces. In
particular, mechanistic decomposition of mechanisms into their
component parts and operations gives rise to a notion of levels distinct
from and more challenging to accommodate than Marr’s.

We find attractive Enlightenment Bayesianism’s commitment to
grounding Bayesian analysis in knowledge of the neural and
psychological mechanisms underlying cognition. Our concern is
with elucidating what the commitment to mechanism involves.
While referring to a number of examples of mechanistic accounts
in cognitive science and ways that Bayesians can integrate
mechanistic analysis, Jones & Love (J&L) say little about the
details of mechanistic explanation. In the last two decades,
several philosophers of science have provided accounts of
mechanistic explanation and mechanistic research as these
have been practiced in biology (Bechtel & Abrahamsen 2005;
Bechtel & Richardson 1993/2010; Machamer et al. 2000) and
the cognitive sciences (Bechtel 2008; Craver 2007). Drawing
on these can help illuminate some of the challenges of integrating
mechanistic analysis into Bayesian accounts.

At the core of mechanistic science is the attempt to explain how
a mechanism produces a phenomenon by decomposing it into its
parts and operations and then recomposing the mechanism to
show how parts and operations are organized, such that when
the mechanism is situated in an appropriate environment, it gen-
erates the phenomenon. One of the best-developed examples in
cognitive science is the decomposition of visual processing into a
variety of brain regions, each of which is capable of processing
different information from visual input. When organized together,
they enable individuals to acquire information about the visible
world. Decomposition can be performed iteratively by treating
the parts of a given mechanism (e.g., V1) as themselves mechan-
isms and decomposing them into their parts and operations.

A hierarchical ordering in which parts are at a lower level than
the mechanism is thus fundamental to a mechanistic perspective.
This notion of levels is importantly different from that advanced by
Marr (1982), to which J&L appeal, which does not make central
the decomposition of a mechanism into its parts and operations.
To illustrate the mechanistic conception of levels in terms of math-
ematical accounts, it is often valuable to provide a mathematical
analysis of the phenomenon for which the mechanism is respon-
sible. In such an account (e.g., the Haken-Kelso-Bunz [HKB]
model of bimanual cordination described by Kelso 1995), the vari-
ables and parameters refer to characteristics of the mechanism as a
whole and aspects of the environment with which the mechanism
interacts. But to explain how such a mechanism functions one
must identify the relevant parts and their operations. The function-
ing of these parts and operations may also require mathematical
modeling (especially when the operations are nonlinear and the
organization non-sequential; see Bechtel & Abrahamsen 2010).
These models are at a lower level of organization and their parts
and operations are characterized in a different vocabulary than
that used to describe the phenomenon (as the objective is to
show how the phenomenon is produced by the joint action of
parts that alone cannot produce it).

We can now pose the question: At what level do Enlightenment
Bayesian accounts operate? Do they, like Bayesian Fundamentalist
accounts, operate at the level of the whole person, where the
hypothesis space reflects people’s actual beliefs? Beliefs are most
naturally construed as doxastic states of the person that arise from
the execution of various operations within the mind/brain. J&L’s
invocation of Gigerenzer’s work on cognitive heuristics (e.g., Giger-
enzer & Todd 1999) suggests this is a perspective they might
embrace – the heuristics are inference strategies of agents and do
not specify the operations that enable agents to execute the heuris-
tics. The resulting Bayesian model may reflect but does not directly
embody the results of decomposing the mind into the component
operations that enable it to form beliefs.

Another possibility is that the Bayesian hypothesis space might
directly incorporate details of the operations performed by com-
ponents (e.g., brain regions identified in cognitive neuroscience
research). Now an additional question arises – with respect to
what environment is optimization evaluated? Since we are
working a level down from the whole mechanism, one might think
that the relevant environment is the internal environment of the
local component (comprising other neural components). But this
seems not to be the strategy in the research J&L cite (Beck et al.
2008; Wilder et al. 2009). Rather, optimization is still with respect
to the task the agent performs. In Beck et al.’s account, a brain
region (lateral intraparietal cortex: LIP) is presented as computing
a Bayesian probability. This directly links the Bayesian account to
parts of the mechanism, but if this approach is to be generalized,
it requires that one find brain components that are computing Baye-
sian probabilities in each instance one applies a Bayesian analysis.

Although we find the prospect of integrating mechanistic and
Bayesian approaches attractive, we are unclear how the results
of mechanistic decomposition – which often leave the agent-
level representations behind to explain how they are realized
through a mechanism’s parts and operations characterized in a
different vocabulary than that which characterizes the agent’s
beliefs – are to be incorporated into a Bayesian account. We
suspect that the most promising strategy is more indirect: Mechan-
istic research at lower levels of organization helps constrain the
account of knowledge possessed by the agent, and Bayesian infer-
ence then applies to such agent-level representations.

A further challenge for understanding how mechanism fits into
Bayesian analysis stems from the fact that Bayesian analyses are
designed to elicit optimal hypotheses. As J&L note, mechanisms,
especially when they evolve through descent with modification,
are seldom optimal. What then is the point of integrating
mechanistic accounts into normative Bayesian models? One
possibility is that the normative accounts serve as discovery heur-
istics – mismatches between the normative model and cognitive
agents’ actual behavior motivate hypotheses as to features of the
mechanism that account for their limitations. While this is plaus-
ible, we wonder about its advantages over investigating the
nature of the mechanism more directly, by studying its current
form or by examining how it evolved through a process of
descent with modification. Often, understanding descent
reveals how biological mechanisms have been kludged to
perform a function satisfactorily but far from optimally.

What the Bayesian framework has contributed
to understanding cognition: Causal learning
as a case study

doi:10.1017/S0140525X1100032X

Keith J. Holyoaka and Hongjing Lua,b

Departments of aPsychology and bStatistics, University of California,

Los Angeles, CA 90095-1563.

holyoak@lifesci.ucla.edu hongjing@ucla.edu

http://www.reasoninglaboratory.dreamhosters.com

http://cvl.psych.ucla.edu/

Abstract: The field of causal learning and reasoning (largely overlooked
in the target article) provides an illuminating case study of how the
modern Bayesian framework has deepened theoretical understanding,
resolved long-standing controversies, and guided development of new
and more principled algorithmic models. This progress was guided in
large part by the systematic formulation and empirical comparison of
multiple alternative Bayesian models.

Jones & Love (J&L) raise the specter of Bayesian Fundamentalism
sweeping through cognitive science, isolating it from algorithmic
models and neuroscience, ushering in a Dark Ages dominated

Commentary/Jones & Love: Bayesian Fundamentalism or Enlightenment?

BEHAVIORAL AND BRAIN SCIENCES (2011) 34:4 203



by an unholy marriage of radical behaviorism with evolutionary
“just so” stories. While we agree that a critical assessment of the
Bayesian framework for cognition could be salutary, the target
article suffers from a serious imbalance: long on speculation
grounded in murky metaphors, short on discussion of actual appli-
cations of the Bayesian framework to modeling of cognitive pro-
cesses. Our commentary aims to redress that imbalance.

The target article virtually ignores the topic of causal inference
(citing only Griffiths & Tenenbaum 2009). This omission is odd,
as causal inference is both a core cognitive process and one of the
most prominent research areas in which modern Bayesian
models have been applied. To quote a recent article by
Holyoak and Cheng in Annual Review of Psychology, “The
most important methodological advance in the past decade in
psychological work on causal learning has been the introduction
of Bayesian inference to causal inference. This began with the
work of Griffiths & Tenenbaum (2005, 2009; Tenenbaum & Grif-
fiths 2001; see also Waldmann & Martignon 1998)” (Holyoak &
Cheng 2011, pp. 142–43). Here we recap how and why the
Bayesian framework has had its impact.

Earlier, Pearl’s (1988) concept of “causal Bayes nets” had
inspired the hypothesis that people learn causal models
(Waldmann & Holyoak 1992), and it had been argued that causal
induction is fundamentally rational (the power PC [probabilistic
contrast] theory of Cheng 1997). However, for about a quarter
century, the view that people infer cause-effect relations from
non-causal contingency data in a fundamentally rational fashion
was pitted against a host of alternatives based either on heuristics
and biases (e.g., Schustack & Sternberg 1981) or on associative
learning models, most notably Rescorla and Wagner’s (1972) learn-
ing rule (e.g., Shanks & Dickinson 1987). A decisive resolution of
this debate proved to be elusive in part because none of the com-
peting models provided a principled account of how uncertainty
influences human causal judgments (Cheng & Holyoak 1995).

J&L assert that, “Taken as a psychological theory, the Bayesian
framework does not have much to say” (sect. 2.2, para. 3). In fact,
the Bayesian framework says that the assessment of causal
strength should not be based simply on a point estimate, as had
previously been assumed, but on a probability distribution that
explicitly quantifies the uncertainty associated with the estimate.
It also says that causal judgments should depend jointly on prior
knowledge and the likelihoods of the observed data. Griffiths and
Tenenbaum (2005) made the critical contribution of showing that
different likelihood functions are derived from the different
assumptions about cause-effect representations postulated by
the power PC theory versus associative learning theory. Both the-
ories can be formulated within a common Bayesian framework,
with each being granted exactly the same basis for representing
uncertainty about causal strength. Hence, a comparison of
these two Bayesian models can help identify the fundamental
representations underlying human causal inference.

A persistent complaint that J&L direct at Bayesian modeling is
that, “Comparing multiple Bayesian models of the same task is
rare” (target article, Abstract); “[i]t is extremely rare to find a com-
parison among alternative Bayesian models of the same task to
determine which is most consistent with empirical data” (sect. 1,
para. 6). One of J&L’s concluding admonishments is that, “there
are generally many Bayesian models of any task. . . . Comparison
among alternative models would potentially reveal a great deal”
(sect. 7, para. 2). But as the work of Griffiths and Tenenbaum
(2005) exemplifies, a basis for comparison of multiple models is
exactly what the Bayesian framework provided to the field of
causal learning.

Lu et al. (2008b) carried the project a step further, implement-
ing and testing a 2�2 design of Bayesian models of learning causal
strength: the two likelihood functions crossed with two priors
(uninformative vs. a preference for sparse and strong causes).
When compared to human data, model comparisons established
that human causal learning is better explained by the assumptions
underlying the power PC theory, rather than by those underlying

associative models. The sparse-and-strong prior accounted for
subtle interactions involving generative and preventive causes
that could not be explained by uninformative priors.

J&L acknowledge that, “An important argument in favor of
rational over mechanistic modeling is that the proliferation of
mechanistic modeling approaches over the past several decades
has led to a state of disorganization” (sect. 4.1, para. 2).
Perhaps no field better exemplified this state of affairs than
causal learning, which had produced roughly 40 algorithmic
models by a recent count (Hattori & Oaksford 2007). Almost
all of these are non-normative, defined (following Perales &
Shanks 2007) as not derived from a well-specified computational
analysis of the goals of causal learning. Lu et al. (2008b) com-
pared their Bayesian models to those which Perales and Shanks
had tested in a large meta-analysis. The Bayesian extensions of
the power PC theory (with zero or one parameter) accounted
for up to 92% of the variance, performing at least as well as the
most successful non-normative model (with four free par-
ameters), and much better than the Rescorla-Wagner model
(see also Griffiths & Tenenbaum 2009).

New Bayesian models of causal learning have thus built upon and
significantly extended previous proposals (e.g., the power PC
theory), and have in turn been extended to completely new areas.
For example, the Bayesian power PC theory has been applied to
analogical inferences based on a single example (Holyoak et al.
2010). Rather than blindly applying some single privileged Bayesian
theory, alternative models have been systematically formulated and
compared to human data. Rather than preempting algorithmic
models, the advances in Bayesian modeling have inspired new
algorithmic models of sequential causal learning, addressing
phenomena related to learning curves and trial order (Daw et al.
2007; Kruschke 2006; Lu et al. 2008a). Efforts are under way to
link computation-level theory with algorithmic and neuroscientific
models. In short, rather than monolithic Bayesian Fundamentalism,
normal science holds sway. Perhaps J&L will happily (if belatedly)
acknowledge the past decade of work on causal learning as a shining
example of “Bayesian Enlightenment.”

Come down from the clouds: Grounding
Bayesian insights in developmental
and behavioral processes
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Abstract: According to Jones & Love (J&L), Bayesian theories are too
often isolated from other theories and behavioral processes. Here, we
highlight examples of two types of isolation from the field of word
learning. Specifically, Bayesian theories ignore emergence, critical to
development theory, and have not probed the behavioral details of
several key phenomena, such as the “suspicious coincidence” effect.

A central failing of the “Bayesian Fundamentalist” perspective, as
described by Jones & Love (J&L), is its isolation from other
theoretical accounts and the rich tradition of empirical work in
psychology. Bayesian fundamentalists examine phenomena
exclusively at the computational level. This limits contact with
other theoretical advances, diminishing the relevance and
impact of Bayesian models. This also limits Bayesians’ concern
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with the processes that underlie human performance. We expand
upon the consequences of these senses of isolation within the
context of word learning research.

One of the most striking shortcomings of Bayesian word learn-
ing approaches is a lack of integration with developmental theory.
J&L put this quite starkly: In the Bayesian perspective, “Nothing
develops” (see sect. 5.4). We agree, but believe that this would be
more aptly put as, “Nothing emerges.” Why? Emergence – the
coalescing of useful complexity out of simple inputs – is a key
element of any developmental theory and a key concept in
modern theories of word learning (see Smith 2000). Without
emergence, existing knowledge can only be shuffled around or
re-weighted; no qualitatively new psychological progress can be
made (see Smith & Thelen 2003; Spencer et al. 2009).

Critically, Bayesian models leave no room for emergence in
their hypothesis space, the priors, or the Bayes’ rule itself.
Recent approaches using hierarchical Bayesian models (HBMs)
show an impressive ability to discover structure in data (e.g.,
Tenenbaum et al. 2011), giving a surface feel of emergence.
However, because this ability rests on the modeler building in
multiple hypothesis spaces and priors in advance, it is not
deeply emergent. These models do not build something new
that was not there before (see Spencer & Perone 2008).

Bayesian disregard for emergence and development is clearly
seen in the Kemp et al. (2007) model of the shape bias discussed
by J&L. This model does not add any quantitative or predictive
value over Smith and colleagues’ earlier alternatives (Smith
et al. 2002). Indeed, by modeling children’s behavior with
static hypotheses about word meanings, they failed to capture
the Smith group’s crucial arguments about the emergence of
this word learning bias. In effect, Kemp et al. presented a
model of the phenomenon but without the development. This
is not forward theoretical progress.

A second shortcoming of the Bayesian perspective is a failure
to probe the inner workings of empirical phenomena in greater
than a computational level of detail. Our recent work in the
area of word learning does exactly this and reveals severe limit-
ations of Bayesian interpretations.

In one set of experiments, we have demonstrated that a well-
known Bayesian phenomenon – the suspicious coincidence (Xu
& Tenenbaum 2007b) – falls apart when several key empirical
details are manipulated. The “suspicious coincidence” refers to
adults’ and children’s more narrow interpretation of a word
when taught using multiple, identical exemplars than when

taught with a single exemplar. Spencer et al. (2011) showed
that when the multiple exemplars are presented sequentially
rather than simultaneously – as is the case in many real-world
learning situations – adults no longer show a suspicious coinci-
dence effect. This result has no specific contact to the concepts
used in the Bayesian model, yet it intuitively maps onto concepts
with a rich history in psychology: Simultaneous presentations
encourage multiple comparisons over objects, leading to an
emphasis on specific featural details, while sequential presenta-
tions afford a more global interpretation of similarity (see,
e.g., Samuelson et al. 2009). Clearly, a theoretical account of
the suspicious coincidence must address such facts.

In a separate experiment, we replicated the suspicious coinci-
dence effect with 31

2- to 5-year-old children when exemplars were
labeled three times. When, however, we increased the number of
labeling events, children no longer showed a suspicious coinci-
dence effect (Jenkins et al., in press). Once again, this manipu-
lation falls outside the scope of the concepts used in the
Bayesian model, but it is a factor that most theories of word learn-
ing and categorization would naturally consider. And, critically,
children’s performance is robustly modulated by such details.

Xu and Tenenbaum (2007b) also neglected to probe the details
of the knowledge children bring to the word learning task (in
Bayesian terms, their hypothesis spaces and priors). Instead of
measuring knowledge directly, Xu and Tenenbaum substituted
adult data from a separate adult experiment. By contrast, we
gathered data from children by using a table-top similarity
ratings task (Perry et al., in preparation; see also, Goldstone
1994). Results showed dramatic, qualitative differences in the
structure of children’s and adults’ category knowledge. More-
over, children with above-median prior knowledge of the
object categories, as measured by parental report, failed to
show a suspicious coincidence effect, whereas below-median
children showed a strong suspicious coincidence effect. This is
the opposite of what Bayesian models predict.

One empirical detail of the suspicious coincidence that Bayesians
have probed is its dependence on whether exemplars are chosen by
a knowledgeable teacher. Bayesians claim a sample is representa-
tive to word learners if it is chosen by a knowledgeable teacher
but potentially biased, and therefore less informative, otherwise
(Xu & Tenenbaum 2007a). We attempted – and failed – to repli-
cate the behavioral evidence supporting this dependence. Xu and
Tenenbaum found a striking difference between teacher-informed
adults (“teacher-driven” in Figure 1A) and adults who partially

Figure 1 (Jenkins et al.). Replication attempt by Xu and Tenenbaum (2007a). A: Xu and Tenenbaum’s results. B: Our exact replication
attempt.
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chose their own exemplars (“learner-driven” in Figure 1A). Our
adult subjects showed no such effect (Figure 1B). It is possible
that the Xu and Tenenbaum data were influenced by the low
number of participants (N ¼ 14 in Figure 1A; N ¼ 20 in
Figure 1B).

The foregoing examples demonstrate a general fragility of one
prominent line of Bayesian word learning research. We believe
this fragility to be both a characteristic and direct consequence
of the Bayesian tendency to isolate theory from the details of
mechanism and process.

In summary, we concur with J&L that there are serious limit-
ations in the Bayesian perspective. Greater integration with other
theoretical concepts in psychology, particularly in developmental
science, and a grounded link to the details of human performance
are needed to justify the continued excitement surrounding this
approach.

In praise of Ecumenical Bayes
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Abstract: Jones & Love (J&L) should have given more attention to
Agnostic uses of Bayesian methods for the statistical analysis of models
and data. Reliance on the frequentist analysis of Bayesian models has
retarded their development and prevented their full evaluation. The
Ecumenical integration of Bayesian statistics to analyze Bayesian
models offers a better way to test their inferential and predictive
capabilities.

In the target article, Jones & Love (J&L) argue that using Baye-
sian statistics as a theoretical metaphor for the mind is useful but,
like all metaphors, limited. I think that is a sensible position.
Bayesian methods afford a complete and coherent solution to
the problem of drawing inferences over structured models
from sparse and noisy data. That seems like a central challenge
faced by the mind, and so it is not surprising the metaphor has
led to insightful models of human cognition. But it will never
be the only useful metaphor.

I certainly agree with the target article that using Bayesian
methods as a statistical framework – that is, as a means to
connect models of cognition with data – is the right thing to do
(Lee 2008; 2011). This “Agnostic” approach is not discussed
much in the target article, which focuses on “Fundamentalist”
uses of Bayes as a theoretical metaphor. The argument is that
Fundamentalist approaches can lead to Enlightenment through
reintegrating processes and representations into Bayesian cogni-
tive models.

What I think is missing from this analysis is the central role of
Agnostic Bayes on the path to enlightenment. I think Bayesian
models of cognition, including potentially more process and rep-
resentation rich ones, need to use Bayesian methods of analysis if
they are to realize their full potential. The target article does not
say very much about the Bayesian analysis of Bayesian models. It
does sound favorably disposed when discussing the need to
evaluate the complexity of cognitive models, which is a natural
property of Bayesian model selection. But the argument for
Bayesian statistical analysis is never made as forcefully as it
should be.

Using Bayesian statistics to analyze Bayesian models might be
called “Ecumenical” Bayes, since it integrates the two uses of
Bayesian methods in studying human cognition. As best
I know, there are very few examples of this integrative approach

(e.g., Huszar et al. 2010; Lee & Sarnecka 2010; in press). But
I think it is theoretically and practically important.

It has always struck me (e.g., Lee 2010; 2011), and others (e.g.,
Kruschke 2010) that there is a sharp irony in many papers pre-
senting Bayesian models of cognition. Often the rationality of
Bayesian inference is emphasized when discussing how people
might make optimal use of available information. But, when
the authors want to test their model against data, and hence
face the same inferential problem, the solution is suddenly differ-
ent. Now they revert to irrational statistical methods, like fre-
quentist estimation and null hypothesis tests, to draw
conclusions about their model.

This complaint is not just statistical nit-picking. Non-Bayesian
analysis has retarded the development of Bayesian models of cog-
nition, by limiting the sorts of Bayesian models that can be con-
sidered, and the depth to which they have been understood and
used.

I think it is possible to illustrate this claim by using Lee and
Sarnecka’s (2010; in press) work on modeling children’s develop-
ment of number concepts. The target article is dismissive of this
work, saying it is done “at the expense of identifying general
mechanisms and architectural characteristics . . . that are appli-
cable across a number of tasks” (sect. 5, para. 5). This is a
strange critique, since the main point of Lee and Sarnecka
(2010; in press) is to argue for specific types of constrained rep-
resentations, in the form of knower-levels, and show how those
representations explain observed behavior on multiple tasks.
But, that confusion aside, I want to use the work as an example
of the benefits of using Bayesian statistics to analyze Bayesian
models.

A key part of Lee and Sarnecka’s (2010; in press) model is a
base rate for behavioral responses, which corresponds to the
child’s prior. It is a probability distribution over the numbers
0 to 15, and is difficult to handle with frequentist estimation. If
the model were being analyzed in the manner usually adopted
to evaluate Bayesian cognitive models, my guess is the following
would have been done. The base-rate prior would have been
hand-tuned to a reasonable set of values, and the model would
have been used to generate behavior. These “predictions”
would then have been compared to experimental data, perhaps
accompanied by a simple summary statistic measuring the agree-
ment, and compared to “straw” models that, for example, did not
have base-rate priors. The conclusion would have been drawn
that the Bayesian machinery had the right properties to explain
key patterns in data showing how children acquire number
concepts.

I find this sort of approach unsatisfying. One of the main
reasons for developing sophisticated models of cognition, like
Bayesian models, is to be able to draw inferences from data,
and make predictions and generalization to future and different
situations. A high-level demonstration that a model is, in prin-
ciple, capable of generating the right sorts of behavioral patterns
falls a long way short of best-practice model-based empirical
science.

What Lee and Sarnecka (2010; in press) were able to do, using
Bayesian instead of frequentist statistical methods, was infer the
base-rate prior from behavioral data, together with all of the
other psychological variables in the model. This is a much
more mature application of Bayesian modeling, because it
makes full contact with the data. It allows the descriptive and pre-
dictive adequacy of the model to be assessed (e.g., through stan-
dard posterior predictive analysis). It allows the Bayesian model
to be used to learn about parameters from data, since it gives the
full joint posterior distribution over the (complicated) parameter
space. And it enables the same representational model to be
applied to data from multiple developmental tasks simul-
taneously, within a hierarchical framework.

I think these sorts of Bayesian statistical capabilities have the
potential to address many of the concerns raised by the target
article about the currently demonstrated success of Bayesian
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models of cognition. Bayesian statistical methods are important,
useful, and should play a central role in analyzing all models of
cognition, including Bayesian ones. The target article views this
as a side issue, but I think it is a fundamental element of the
path to enlightenment.

Cognitive systems optimize energy
rather than information

doi:10.1017/S0140525X11000355

Arthur B. Markman and A. Ross Otto
Department of Psychology, University of Texas, Austin, TX 78712.

markman@psy.utexas.edu rotto@mail.utexas.edu

http://homepage.psy.utexas.edu/homepage/Faculty/Markman/

PSY394/kreps11.html

Abstract: Cognitive models focus on information and the computational
manipulation of information. Rational models optimize the function that
relates the input of a process to the output. In contrast, efficient
algorithms minimize the computational cost of processing in terms of
time. Minimizing time is a better criterion for normative models,
because it reflects the energy costs of a physical system.

Two parallel developments in the 1940s set the stage both for the
cognitive revolution of the 1950s and for the discussion presented
in the target article. The development of information theory
explored ways to characterize the information content of a
message and ways to consider how to best pass messages
(Shannon 1949). At the same time, the architecture for digital
computing led to advances in discrete mathematics that facili-
tated the analysis of the efficiency of algorithms (Turing 1950).

One consequence of the cognitive revolution was that that it
became common to characterize the mind as a computational
device. Thus, researchers began to formulate theories of
mental processes in computational terms. As Marr (1982)
points out, a process can be defined at either a computational
level or an algorithmic level of description. At the computational
level, the process is defined by a mapping between information
available at the start and end of the process. For example, Ander-
son (1990) advocates a Bayesian, “rational-level” analysis of the
information relationship between inputs and outputs of a
system. At the algorithmic level, a process is specified in terms
of a set of steps that implements this computational-level descrip-
tion. Any given algorithm can be analyzed for its efficiency in
time. The efficiency of a cognitive process can be established at
either the computational level of description or at the algorithmic
level. The Bayesian approaches described in the target article are
focused on defining the optimality of a cognitive process at the
computational level (Anderson 1990; Tenenbaum & Griffiths
2001). Anderson (1990) does point out that computational costs
can also play a role in determining a rational model, but, in prac-
tice, these considerations did not have a significant influence on
the structure of his rational models.

The danger in casting optimality purely at the computational
level is that human cognition is implemented by a physical
system. Indeed, it has been proposed that any characterization
of the optimality of actions or beliefs should take into account
the resource-limited nature of the human cognitive apparatus
(Cherniak 1986; Stanovich & West 1998). As the target article
points out, the brain consumes a significant amount of energy.
Thus, energy minimization is likely to be an important constraint
on cognitive processing.

The idea that energy-minimization is an important constraint
on cognitive processing is implicit in the focus on efficient com-
putational procedures. We do not suppose that the metabolic
cost of cognition is completely invariant of the type of thinking
that people are engaged in, but marginal changes in metabolic

rates attributed to different types of cognition pale in comparison
to the metabolic cost of simply keeping the brain running. Thus,
the time taken by a process is a good proxy for energy conserva-
tion. On this view, for example, habits minimize energy, because
they allow a complex behavior to be carried out quickly (e.g.,
Logan 1988; Schneider & Shiffrin 1977).

Of course, effort-minimization is not the only constraint on
cognitive processing. It is crucial that a process be carried out
to a degree sufficient to solve the problem faced by the individ-
ual. This view was central to Simon’s (1957b) concept of satisfi-
cing. This view suggested that cognitive processes aim to
expend the minimal amount of effort required to solve a
problem. On this view, the costs of additional effort outweigh
the gains in decision accuracy. This idea was elaborated in the
effort accuracy framework developed by Payne et al. (1993).
Their work examined the variety of strategies that people
utilize in order to balance decision accuracy with effort – the
cognitive costs of gathering and integrating information about
choice attributes – in decision-making. Payne et al. point out
that these strategies differ both in the effort required to carry
them out as well as in their likelihood of returning an accurate
response. People negotiate the trade-off between effort and accu-
racy by selecting decision strategies that minimize the effort
required to yield an acceptable outcome from a choice.

A key shortcoming, then, of the Bayesian Fundamentalist
approach is that it optimizes the wrong thing. The ideal observer
or actor defined purely in terms of information is quite useful,
but primarily as a point of comparison against human cognitive
or sensory abilities rather than as a statement of what is
optimal as a cognitive process (e.g., Geisler 1989). A definition
of optimal behavior needs to take energy minimization into
account. Thus, the key limitation of Bayesian Fundamentalism
is that it focuses selectively on optimality of information proces-
sing rather than on the combination of information and time.

Enlightenment grows from fundamentals

doi:10.1017/S0140525X11000367

Daniel Joseph Navarro and Amy Francesca Perfors
School of Psychology, University of Adelaide, Adelaide, SA 5005, Australia.

daniel.navarro@adelaide.edu.au amy.perfors@adelaide.edu.au

http://www.psychology.adelaide.edu.au/personalpages/staff/

danielnavarro/

http://www.psychology.adelaide.edu.au/personalpages/staff/

amyperfors/

Abstract: Jones & Love (J&L) contend that the Bayesian approach
should integrate process constraints with abstract computational
analysis. We agree, but argue that the fundamentalist/enlightened
dichotomy is a false one: Enlightened research is deeply intertwined
with – and to a large extent is impossible without – the basic,
fundamental work upon which it is based.

Should Bayesian researchers focus on “enlightened” modelling
that seriously considers the interplay between rational and
mechanistic accounts of cognition, rather than a “fundamentalist”
approach that restricts itself to rational accounts only? Like many
scientists, we see great promise in the “enlightened” research
program. We argue, however, that enlightened Bayesianism is
deeply reliant on research into Bayesian fundamentals, and the
fundamentals cannot be abandoned without greatly affecting
more enlightened work. Without solid fundamental work to
extend, enlightened research will be far more difficult.

To illustrate this, consider the paper by Sanborn et al. (2010a),
which Jones & Love (J&L) consider to be “enlightened” as it
seeks to adapt an ideal Bayesian model to incorporate insights
about psychological process. To achieve this, however, it relies
heavily upon work that itself would not have counted as
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“enlightened.” The comparison between Gibbs sampling and
particle filtering as rival process models grew from “unenligh-
tened” research that used these algorithms purely as methodo-
logical tools. As such, without this “fundamentalist” work the
enlightened paper simply would not have been written.

Enlightened research can depend on fundamentals in other
ways. Rather than adapt an existing Bayesian model to incorpor-
ate process constraints, Navarro and Perfors (2011) used both
Bayesian fundamentals (an abstract hypothesis space) and
process fundamentals (capacity limitations on working memory)
as the foundations of an analysis of human hypothesis testing.
Identifying a conditionally optimal learning strategy, given the
process constraint, turned out to reproduce the “positive test
strategy” that people typically employ (Wason 1960), but only
under certain assumptions about what kinds of hypotheses are
allowed to form the abstract hypothesis space. This analysis,
which extended existing work (Klayman & Ha 1987; Oaksford
& Chater 1994) and led us to new insights about what kinds of
hypotheses human learners “should” entertain, could not have
been done without “fundamentalist” research into both the stat-
istical and the mechanistic basis of human learning.

Not only do “enlightened” papers depend on fundamental ones,
we suggest that they are a natural outgrowth of those papers. Con-
sider the early work on Bayesian concept learning, which con-
tained a tension between the “weak sampling” assumption of
Shepard (1987) and the “strong sampling” assumption of Tenen-
baum and Griffiths (2001). When strong sampling was introduced,
it would presumably have counted as “fundamentalism,” since the
2001 paper contains very little by way of empirical data or con-
sideration of the sampling structure of natural environments.
Nevertheless, it served as a foundation for later papers that dis-
cussed exactly those issues. For instance, Xu and Tenenbaum
(2007a) looked at how human learning is shaped by explicit
changes to the sampling model. This in turn led Navarro et al.
(in press) to propose a more general class of sampling models,
and to pit them all against one another in an empirical test. (It
turned out that there are quite strong individual differences in
what people use as their “default” sampling assumption.) The
change over time is instructive: What we observe is a gradual
shift from simpler “fundamentalist” papers that develop the
theory in a reduced form, towards a richer framework that
begins to capture the subtleties of the psychology in play.

Even J&L’s own chosen examples show the same pattern. Con-
sider the Kemp et al. (2007) article, which J&L cite as a prime
example of “fundamentalist” Bayesianism, since it introduces no
new data and covers similar ground to previous connectionist
models (Colunga & Smith 2005). Viewing the paper in isolation,
we might agree that the value added is minor. But the framework
it introduced has been a valuable tool for subsequent research. An
extension of the model has been used to investigate how adults
learn to perform abstract “second order” generalizations (Perfors
& Tenenbaum 2009) and to address long-debated issues in verb
learning (Perfors et al. 2010). A related model has even been
used to investigate process-level constraints; Perfors (in press)
uses it to investigate whether or not memory limitations can
produce a “less is more” effect in language acquisition. It is from
the basic, fundamental research performed by Kemp et al.
(2007) that these richer, more enlightened projects have grown.

Viewed more broadly, the principle of “enlightenment growing
from fundamentals” is applicable beyond Bayesian modelling;
our last example is therefore an inversion. We suggest that J&L
understate the importance of computational considerations in
good process modelling. For instance, one of their key examples
comes from Sakamoto et al. (2008), who consider mechanistic
models of category learning. That paper might be characterized
as a “fundamentalist” work in process modelling, insofar as it
gives no consideration to the computational level issues that
pertain to their choice of learning problem. As consequence of
this “process fundamentalism,” the “rational” model that paper
employs is not actually a rational model. It is highly mis-specified

for the problem of learning time-inhomogeneous categories. In
recent work (Navarro & Perfors 2009), we discuss this concern
and introduce extensions to the experimental framework aimed
at highlighting the computational considerations involved; at
present, we are working on model development to build on
this. However, the goal in our work is not to deny the importance
of process, but to learn which aspects of human behaviour are
attributable to computational level issues and which aspects
reflect process limitations. In this case, that goal is met by build-
ing on fundamental work on the process level (i.e., Sakamoto
et al.’s 2008 paper) and adding computational considerations.
In general, attaining the goal of “enlightened” research is possible
only if fundamentals on both levels are taken seriously – if
researchers deny neither psychological mechanism nor ideal
computation.

Like J&L, we believe that it is the interaction between the twin
considerations of computation and process that leads us to learn
about the mind. However, this should not lead us to abandon
work that focuses on only one of these two components. Enligh-
tened research is constructed from the building blocks that fun-
damental work provides.

The illusion of mechanism: Mechanistic
fundamentalism or enlightenment?
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Abstract: Rather than worrying about Bayesian Fundamentalists, I
suggest that our real concern should be with Mechanistic
Fundamentalists; that is, those who believe that concrete, but frequently
untestable mechanisms, should be at the heart of all cognitive theories.

Jones & Love (J&L) suggest that we should reject Bayesian Fun-
damentalism in favour of Bayesian Enlightenment, thus combin-
ing Bayesian analysis with mechanistic-level models. This raises
two questions: Who are these Bayesian Fundamentalists and
what is a mechanistic-level model?

First, let us go in search of Bayesian Fundamentalists. As I
read the target article, I began to wonder how it could be that
I’d never encountered a Bayesian Fundamentalist. If these
ideas are so pervasive, then surely J&L could quote at least one
author who has made a clear statement of the Bayesian Funda-
mentalist programme? From the first line of the abstract it
appears that the main proponent of Bayesian Fundamentalism
must be Anderson (1990) with his Rational Analysis framework,
and his suggestion that behaviour can often be explained by
assuming that it is optimally adapted to its purpose and the
environment. In criticising rational analysis, J&L argue that
“Rather than the globally optimal design winning out, often a
locally optimal solution . . . prevails. . . . Such non-behavioral
factors are enormously important to the optimization process,
but are not reflected in rational analyses, as these factors are
tied to a notion of mechanism, which is absent in rational ana-
lyses” (sect. 5.3, paras. 3 and 5).

A similar concern about the limitations of rational analysis can
be found in the following quotation: “My guess is that short-term
memory limitations do not have a rational explanation. . . . [T]hey
reflect the human trapped on some local optimum of evolution”
(Anderson 1990, pp. 91–92). These cautionary words on the
dangers of relying entirely on rational explanations were
written by the arch-Fundamentalist himself. Is there really a
difference, then, between these two positions?

Commentary/Jones & Love: Bayesian Fundamentalism or Enlightenment?

208 BEHAVIORAL AND BRAIN SCIENCES (2011) 34:4



Let’s now move on to the second question: What is a mechan-
istic-level model? If we need to develop mechanistic models,
then we need to know what such entities might look like.
Nowhere do J&L define what they mean by a mechanistic-level
theory. Perhaps we can get some clues from their other writings.
Sakamoto et al. (2008) describe a “mechanistic model that prin-
cipally differs from the aforementioned rational models in that
the mechanistic model does not have perfect memory for the
training items” (p. 1059). But here the mechanism is simply a
specification of the computations that the model performs.
That is, although the model is not as abstract as Marr’s (1982)
computational level, it is not as concrete as his algorithmic
level, and certainly says nothing about implementation.

One might call this a process model, or a functional-level expla-
nation. It specifies the functions, computations, and processes in
a way that allows the model to be implemented as a computer
program and to simulate behavioural data. The program per-
forming the simulations must compute mathematical functions
such as square roots, but presumably the exact algorithm or
implementation used to compute a square root is not part of
the theory. If this kind of functional explanation is indeed what
J&L mean by a mechanistic theory, then I am wholeheartedly
in favour of their approach. But I am not entirely sure that this
is exactly what they have in mind. Elsewhere they talk about
mechanistic issues “of representation, timing, capacity,
anatomy, and pathology” (sect. 4.1, para. 3). If this is simply to
echo Marr in wishing to bring together multiple levels of descrip-
tion and explanation, then few would disagree. However, I worry
that J&L may be encouraging Mechanistic Fundamentalism: the
belief that a good cognitive theory must do more than just
describe processes and computations, and must also specify con-
crete mechanisms in terms of mechanical components such as
nodes, activations, weights, and buffers. This view easily leads
to the illusion of mechanism, whereby the mechanisms are mis-
taken for explanations.

Let’s illustrate this by considering interactive activation net-
works, which are still at the core of many contemporary
models. In these networks the activation of each node increases
as a result of weighted input, and decreases as a result of inhi-
bition from competing nodes. Activations roughly reflect the evi-
dence for each node or hypothesis as a proportion of the evidence
for all hypotheses. Although it is hard to specify exactly what
computational function such networks perform, the general prin-
ciple seems very much like Bayes’ theorem. However, for many
psychologists the network model is to be preferred over a Baye-
sian explanation because the former seems to say something
about mechanism. But this is the illusion of mechanism. Unless
the precise implementation of the network is intended as a theor-
etical claim about how processes are implemented in the brain,
the mechanism itself makes no contribution to the explanation.
If it happened to be the case that the data could be fit by any
“mechanism” that could compute Bayes’ theorem, then the
explanation would be that the system behaves in an approxi-
mately optimal manner.

This immediately raises the problem of model equivalence.
Unless candidate mechanisms produce testably different beha-
viours, the implementational details are not part of the expla-
nation. To quote yet again from Anderson (1990), “If two
theorists propose two sets of mechanisms in two architectures
that compute the same function, then they are proposing the
same theory” (p. 26). One might protest that at least when study-
ing the mind and the brain, there will always be some neurobio-
logical data that could definitively distinguish between alternative
mechanisms. Even ignoring the fact that such a view would imply
that there is no distinctly psychological level of explanation, in
practice such optimism is misplaced. Even the most productive
cognitive theories rarely make any definitive commitment to
implementational details. Again, this is apparent in connectionist
models based on artificial neurons whose properties bear little
resemblance to real neurons. But connectionist modellers are

fully aware of this deliberate limitation, and it is hard to see
that any of the insights from connectionist modelling are under-
mined by this simplification.

In conclusion, then, I suggest that most Bayesians are already
enlightened; it is the Mechanistic Fundamentalists we should
worry about.

Reverse engineering the structure
of cognitive mechanisms
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Abstract: Describing a cognitive system at a mechanistic level requires
an engineering task analysis. This involves identifying the task and
developing models of possible solutions. Evolutionary psychology and
Bayesian modeling make complimentary contributions: Evolutionary
psychology suggests the types of tasks that human brains were designed
to solve, while Bayesian modeling provides a rigorous description of
possible computational solutions to such problems.

Because of their mathematical formalism, Bayesian models of
cognition have the potential to infuse greater rigor into psycho-
logical models of how the mind works. Any theoretical framework
committed to specifying (1) the class of cues that a mechanism is
a sensitive to, (2) the operations it performs in response to those
cues, and (3) the resultant outputs, is to be heartily welcomed
into the theoretical toolbox of psychology.

Jones & Love (J&L) argue that, to be successful, Bayesian
modelers should increase their focus on a mechanistic level of
analysis, and use the examples of behaviorism and evolutionary
psychology to warn them against the pitfalls of theoretical
approaches that ignore psychological mechanisms and instead
move directly from behavior to the environment. In the case of
evolutionary psychology, this critique is simply mistaken. In
fact, the field was founded specifically in response to previous
evolutionary approaches, such as ethology, that ignored this
middle level of analysis (e.g., Cosmides & Tooby 1987). The
goal of evolutionary psychology is the same as any branch of cog-
nitive science: to describe the information-processing structure
of psychological mechanisms. What is distinct about evolutionary
psychology is that principles of natural selection are used to
predict the structure of cognitive mechanisms. These models
generate testable predictions that can be adjudicated by empiri-
cal data.

The history of psychology suggests that well-specified task ana-
lyses (Marr 1982) are the most tractable way of reverse engineer-
ing the structure of cognitive mechanisms. As J&L discuss, the
challenge for any psychologist is to (1) identify the task being
solved, and (2) develop models of possible solutions. Through
this lens, evolutionary psychology and Bayesian modeling make
complimentary contributions. Evolutionary psychology, properly
applied, is a deductive framework for generating predictions
about the types of tasks cognitive mechanisms were designed
to solve. This constrains the possibility space for the structure
of a cognitive mechanism – what class of cues mechanisms are
likely to use and what their resultant output and criterion for
success should be. It rests on the premise that natural selection
builds deterministic cognitive mechanisms that take as inputs
aspects of the world that were invariant over phylogenetic time
and generate outputs that would have led to the intergenera-
tional differential reproduction of such systems. It is therefore
a way to deductively generate hypotheses about the existence
of previously unknown cognitive mechanisms. What evolutionary
psychology is not – even in principle – is a description of any
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particular engineering solution. In contrast, Bayesian modeling is
a description of an engineering solution: Cognitive mechanisms
whose function requires holding and updating probabilities will
– constraints aside – behave according to Bayes’ theorem. What
Bayesian modeling is not – even in principle – is a way to gener-
ate hypotheses or predictions about the range of cues cognitive
systems use and their criteria for success.

Natural selection builds cognitive mechanisms around phylo-

genetic invariances. Organisms’ cognitive mechanisms reflect the
dynamics of multiple generations of individuals interacting with
recurrent features of the natural environment (i.e., phylogenetic
dynamics not visible within an individual lifetime). For example,
after copulation with a female, a male house mouse will commit
infanticide on any pups born for the duration of the typical
mouse gestational period, after which point they will rear any
pups born; manipulations demonstrated that males achieve this
by tracking the number of light/dark cycles (Perrigo et al. 1991;
1992). The cognitive mechanisms in the male mouse that
mediate this relationship between light/dark cycles and killing
versus caring behaviors are a result of the dynamics of differential
reproductive success over multiple generations. Invariant relation-
ships in the world – the duration of light/dark cycles in a natural
terrestrial environment, that copulation leads to offspring, the dur-
ation of gestation, and so forth – are “seen” by natural selection,
which in turn engineers biological mechanisms that instantiate
input/output relationships. In this example, not only are the
input cues based around intergenerational invariances, but the
generated outputs are those which would lead to differential
reproductive success within the context of those intergenerational
invariances (i.e., mechanisms that discriminately kill or rear pups
as a function of actuarial relatedness will do differentially better
over multiple generations than mechanisms that do not).

As this example demonstrates, differential reproductive success
(i.e., natural selection) operating over phylogenetic invariances
determines input/output relationships in cognitive systems
(see Tooby et al. [2008] for examples of using the deductive
logic of phylogenetic invariances to predict and test novel cogni-
tive mechanisms in humans). Of course, once a task is identified
and a relevant mechanism proposed, the computational structure
of that mechanism must still be described. Any one particular
computational engineering solution is not entailed by the fact
that natural selection designed a certain cognitive mechanism
– in principle, there are many possible engineering solutions.
In some cases, the computational solution to handling a particu-
lar set of invariances will be a Bayesian system. Integrating a
phylogenetic perspective (in addition to an ontogenetic one)
can provide Bayesian modelers with clear, deductive ways to
determine the hypothesis space for a computational system and
to set priors.

Going forward: Engineering task analyses. Historical accident
aside, Bayesian modeling and evolutionary psychology are not
in fact alternative approaches to understanding psychology.
Rather, both make necessary but distinct contributions to the
process of reverse engineering the mind at a mechanistic
level. We are confident that both evolutionary psychology and
Bayesian modeling could productively pool their efforts. Evol-
utionary psychology can provide the framing of task analyses
– descriptions of the problem and tasks that cognitive systems
must in principle solve. Bayesian models of cognition can
provide rigorous, mathematical descriptions of certain types
of engineering solutions. We look forward to a time when psy-
chologists choose ecologically valid task analyses and posit fully
mechanistic accounts of how the solution to those problems
could be implemented by a fully mechanistic system without
trying to shoe-horn each reverse engineering task analysis into
any common overarching meta-theoretical framework. In the
future, we hope there are no evolutionary psychologists or
Bayesian modelers, just psychologists who reverse engineer
the mind at a mechanistic level, using any and all deductive
theoretical tools at their disposal.

Taking the rationality out of probabilistic
models
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Abstract: Rational models vary in their goals and sources of justification.
While the assumptions of some are grounded in the environment, those
of others – which I label probabilistic models – are induced and so
require more traditional sources of justification, such as generalizability
to dissimilar tasks and making novel predictions. Their contribution to
scientific understanding will remain uncertain until standards of
evidence are clarified.

The Jones & Love (J&L) target article begins what is hopefully an
extended discussion of the virtues of rational models in psychol-
ogy. Such discussion is sorely needed because the recent prolifer-
ation of such models has not been accompanied by the
meta-theoretical understanding needed to appreciate their scien-
tific contribution. When rational models are presented at confer-
ences, the speaker always receives polite applause, but casual
conversation afterwards often reveals that many listeners have
little idea of how scientific understanding of the topic has been
advanced. Even the practitioners (including myself) are often
unable to fluently answer the question: “How has the field’s
understanding of the psychology of X been advanced?” This
state of affairs needs to change.

J&L’s article may help by clarifying how rational models can
vary in their purpose and source of justification. At one extreme,
there are models that fall into the “Bayesian Fundamentalism” cat-
egory and yet are not susceptible to J&L’s criticisms. One only
need look at a model as old and venerable as signal detection
theory (SDT) for an example. SDT specifies optimal behavior,
given certain assumptions about the representation of perceptual
input, priors, and a cost function. Importantly, the priors (the
probability of a signal) and costs (e.g., of a false alarm) can be
tied to features of the SDT experiment itself (for a review, see
Maloney & Zhang 2010). There are many examples of such
models in the domains of perception and action.

But the apparent target of J&L’s article are models in which
priors are assumed rather than tied to features of an experimental
(or any other) context and for which costs of incorrect decisions
are unspecified. For example, numerous models specify how one
should learn and reason with categories; that is, they assume
some sort of prior distribution over systems of mutually exclusive
categories (e.g., Kemp & Tenenbaum 2009; Sanborn et al.
2010a). But although this assumption may seem uncontroversial,
it is not. Notoriously, even biological species (the paradigmatic
example of categories) fail to conform to these assumptions, as
there are cases in which the males of one “species” can success-
fully breed with the females of another, but not vice versa (and
cases of successful breeding between As and Bs, and Bs and
Cs, but not As and Cs) (Dupre 1981). In what sense should a
model that accounts for human categorical reasoning be con-
sidered rational when its prior embodies assumptions that are
demonstrably false? Of course, the costs associated with such
ungrounded priors may be small, but models that fail to explicitly
consider costs are common. Many rational models in higher-
order cognition have this character.

My own modest proposal is that we should drop the label
“rational” for these sorts of models and call them what they
are, namely, probabilistic models. I suggest that freeing probabil-
istic models from the burden of rationality clarifies both their
virtues and obligations. Considering obligations, J&L correctly
observe that, if not grounded in the environment, justification
for a model’s priors must be found elsewhere. But the history
of science provides numerous examples of testing whether
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postulated hidden variables (e.g., priors in a probabilistic model)
exist in the world or in the head of the theorist, namely, through
converging operations (Salmon 1984). For example, one’s confi-
dence in the psychological reality of a particular prior is increased
when evidence for it is found across multiple, dissimilar tasks
(e.g., Maloney & Mamassian 2009; Rehder & Kim 2010). It is
also increased when the probabilistic model not only provides
post hoc accounts of existing data but is also used to derive and
test new predictions. For instance, the case for the psychological
reality of SDT was strengthened when perceivers responded in
predicted ways to orthogonal manipulations of stimulus intensity
and payoff structure. This is how one can treat the assumptions of
a probabilistic model as serious psychological claims and thus be
what J&L describe as an “enlightened” Bayesian.

Taking the rationality out of probabilistic models also shifts
attention to their other properties, and so clarifies for which
tasks such models are likely to be successful. By using Bayes’
law as the only rule of inference, one’s “explanation” of a psycho-
logical phenomenon, divided between process and knowledge in
classic information-processing models, is based solely on knowl-
edge (priors) instead. Said differently, one might view Bayes’ law
as supporting a programming language in which to express
models (a probabilistic analog of how theorists once exploited
the other normative model of reasoning – formal logic – by pro-
gramming in PROLOG [programming logic]; Genesereth &
Nilsson 1987). These models will succeed to the extent that
task performance is determined primarily by human reasoners’
prior experience and knowledge. Probabilistic models also help
identify variables that are likely to be critical to behavior (i.e.,
they provide an old-fashioned task analysis; Card et al. 1983);
in turn, this analysis will suggest critical ways in which people
may differ from one another. Finally, by making them susceptible
to analysis, probabilistic models are directing researchers’ atten-
tion towards entirely new sorts of behaviors that were previously
considered too complex to study systematically.

My expectation is that the analysis conducted by J&L will help
lead to an appreciation of the heterogeneity among rational/prob-
abilistic models and to clarity regarding the standards to which
each should be held. This clarity will not only help conference-
goers understand why they are clapping, it will promote the
other sorts of virtuous model testing practices that J&L advocate.
There are examples of Bayesian models being compared with com-
peting models, both Bayesian (Rehder & Burnett 2005) and non-
Bayesian ones (e.g., Kemp & Tenenbaum 2009; Rehder 2009;
Rehder & Kim 2010), but more are needed. Such activities will
help the rational movement move beyond a progressive research
program (in Lakatos’s terms; see Lakatos 1970) in which research
activities are largely confirmatory, to a more mature phase in which
the scientific contribution of such models is transparent.

Distinguishing literal from metaphorical
applications of Bayesian approaches

doi:10.1017/S0140525X11000434

Timothy T. Rogers and Mark S. Seidenberg
Department of Psychology, University of Wisconsin–Madison, Madison, WI

53726.

ttrogers@wisc.edu http://concepts.psych.wisc.edu

seidenberg@wisc.edu http://lcnl.wisc.edu

Abstract: We distinguish between literal and metaphorical applications
of Bayesian models. When intended literally, an isomorphism exists
between the elements of representation assumed by the rational
analysis and the mechanism that implements the computation. Thus,
observation of the implementation can externally validate assumptions
underlying the rational analysis. In other applications, no such
isomorphism exists, so it is not clear how the assumptions that allow a
Bayesian model to fit data can be independently validated.

Jones & Love’s (J&L’s) attempt to differentiate uses of Bayesian
models is very helpful. The question is, what distinguishes the
useful tools from the “fundamentalist” applications? We think
one factor is whether Bayesian proposals are intended literally
or metaphorically, something that is not usually made explicit.
The distinction is exemplified by the different uses of Bayesian
theories in studies of vision versus concepts.

In vision, computational analyses of the statistics of natural
scenes have yielded hypotheses about representational elements
(a class of basis functions) that provide a putatively optimally effi-
cient code (Simoncelli & Olshausen 2001). The fact that neurons
in visual cortex have receptive fields that approximate these basis
functions was a major discovery (Olshausen & Field 1996). Thus,
there is a direct, rather than metaphorical, relation between a
rational hypothesis about a function of the visual system and its
neurobiological basis. It is easy to see how the firing activity of
a visual neuron might literally implement a particular basis func-
tion, and thus, how the pattern of activation over a field of such
neurons might provide an efficient code for the statistics of the
visual scene. This isomorphism is not merely coincidental.

In metaphorical applications, no such mapping exists between
the proposed function and implementation. People are assumed
to compute probability distributions over taxonomic hierarchies,
syntactic trees, directed acyclic graphs, and so on, but no theorist
believes that such distributions are directly encoded in neural
activity, which, in many cases, would be physically impossible.
For instance, Xu and Tenenbaum (2007b) have proposed that,
when learning the meaning of a word, children compute posterior
probability distributions over the set of all possible categories. If
there were only 100 different objects in a given person’s environ-
ment, the number of possible categories (2100, or ~1.27 � 1030)
would exceed the number of neurons in the human brain by
about 19 orders of magnitude. Thus, theorists working in this tra-
dition disavow any direct connection to neuroscience, identifying
the work at Marr’s computational level (Marr 1982). The idea
seems to be that, although the brain does not (and cannot) actually
compute the exact posterior probability distributions assumed by
the theory, it successfully approximates this distribution via some
unknown process. Since any method for approximating the true
posterior distribution will achieve the same function, there is no
need to figure out how the brain does it.

The problem is that this approach affords no way of externally
validating the assumptions that enable the Bayesian theory to fit
data, including assumptions about the function being carried out,
the structure of the hypothesis space, and the prior distributions.
This limitation is nontrivial. Any pattern of behavior can be consist-
ent with some rational analysis if the underlying assumptions are
unconstrained. For instance, given any pattern of behavior, one
can always work backward from Bayes’ rule to find the set of
priors that make the outcomes look rational. Thus, good fit to be-
havioral data does not validate a Bayesian model if there is no inde-
pendent motivation for the priors and other assumptions. The
strongest form of independent motivation would be external vali-
dation through some empirical observation not directly tied to
the behavior of interest, as in the vision case: Conclusions from
the rational analysis (i.e., that a particular basis function provides
an optimally efficient code, so vision must make use of such basis
functions) were validated through empirical observation of the
receptive fields of neurons in visual cortex. But this kind of external
validation is not available in cases where the mapping between the
rational analysis and neural implementation is unknown.

Much of this is familiar from earlier research on language. Baye-
sian cognitive theories are competence theories in Chomsky’s
(1965) sense. Like Chomskyan theories, they make strong a
priori commitments about what the central functions are and
how knowledge is represented, and they idealize many aspects
of performance in the service of identifying essential truths. The
links between the idealization and how it is acquired, used, or rep-
resented in the brain are left as promissory notes – still largely
unfulfilled in the case of language. But the language example
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suggests that the idealizations and simplifications that make a com-
petence (or “computational”) theory possible also create non-iso-
morphisms with more realistic characterizations of performance
and with brain mechanisms (Seidenberg & Plaut, in press). The
situation does not materially change because Bayesian theories
are nominally more concerned with how specific tasks are per-
formed; the result is merely competence theories of performance.

As J&L note in the target article, similar issues have also arisen
for connectionism over the years, with critics arguing that connec-
tionist models can be adapted to fit essentially any pattern of data.
There is a key difference, however: The connectionist framework
is intended to capture important characteristics of neural proces-
sing mechanisms, so there is at least the potential to constrain
key assumptions with data from neuroscience. This potential
may not be realized in every instantiation of a connectionist
model, and models invoking connectionist principles without con-
nection to neural processes are subject to the same concerns we
have raised about Bayesian models. But it is becoming increasingly
common to tie the development of such models to observations
from neuroscience, and this marriage has produced important
and productive research programs in memory (Norman &
O’Reilly 2003; O’Reilly & Norman 2002), language (Harm & Sei-
denberg 2004; McClelland & Patterson 2002), cognitive control
(Botvinick et al. 2001), routine sequential action (Botvinick &
Plaut 2004), and conceptual knowledge (Rogers & McClelland
2004; Rogers et al. 2004) over the past several years. Bayesian
approaches will also shed considerable light on the processes
that support human cognition in the years to come, when they
can be more closely tied to neurobiological mechanisms.

Bayesian computation and mechanism:
Theoretical pluralism drives scientific
emergence
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Abstract: The breadth-first search adopted by Bayesian researchers to
map out the conceptual space and identify what the framework can do
is beneficial for science and reflective of its collaborative and
incremental nature. Theoretical pluralism among researchers facilitates
refinement of models within various levels of analysis, which ultimately
enables effective cross-talk between different levels of analysis.

The target article by Jones & Love (J&L) is another entry to the
recent debate contrasting the merits of Bayesian and more
mechanistic modeling perspectives (e.g., Griffiths et al. 2010;
McClelland et al. 2010). Regrettably, much of this debate has
been tainted by a subtext that presupposes the approaches to
be adversarial rather than allied (see, e.g., Feldman 2010;
Kruschke 2010). J&L are correct in asserting that research
agendas pitched at different levels of analysis will investigate
different research questions that lead to different theoretical sol-
utions (e.g., Dennett 1987; Marr 1982/2010). However, any
complete psychological theory must account for phenomena at
multiple levels of analysis and, additionally, elucidate the
relations between levels (e.g., Schall 2004; Teller 1984). We
also note that the various levels of analysis are causally

interrelated and are thus mutually constraining (Rumelhart &
McClelland 1985). It follows that refinement of a model at one
level of analysis focuses the search for theoretical solutions at
another. We therefore view theoretical pluralism among
researchers as an efficient means of developing more complete
psychological theories.

We suggest that findings from the so-called “Bayesian Funda-
mentalist” perspective have highlighted core issues in developing
more complete psychological theories, and that discoveries by
individual “Fundamentalist” researchers may actually facilitate
discipline-wide “Enlightenment” by sharpening questions and
generating novel insights that stimulate research (e.g., Shiffrin
et al. 2008). J&L’s admonishment of Bayesian Fundamentalism,
depending on whether it is directed at psychological science as a
whole, or to individual researchers, is either a) powerful but
directed at a largely non-existent opponent, or (b) misguided
insofar that the collaborative nature of scientific progress
offsets the narrow focus of individual scientists.

Contrary to J&L, we argue the “breadth-first” approach
adopted by many Bayesian theorists, rather than stifling theoreti-
cal progress, actually facilitates cross-talk between levels of analy-
sis. That contemporary Bayesian theorists are aware of, and
aspire to resolve this tension, is reflected in recent work that
has sought to reconcile rational accounts with more traditional
process models. For example, to the extent that models of cogni-
tive processing implement sampling algorithms to approximate
full Bayesian inference, models at different levels of analysis
can be mutually informative. Shi et al. (2010) illustrate how
exemplar models (e.g., Nosofsky 1986) can be interpreted as an
importance sampling algorithm, and, similarly, Sanborn
et al.(2010a) explored the particle filter algorithm as a way of
leveraging a process interpretation of Anderson’s (1991b)
rational model. Lewandowsky et al.(2009) used iterated learning
(Griffiths & Kalish 2007; Kalish et al. 2007), an experimental
paradigm motivated by technological advances in sampling tech-
niques used to approximate Bayesian posteriors, to decisively
reject a sparse-exemplar model of predicting the future.
Kruschke (2006; 2008) contrasted globally and locally Bayesian
approaches to associative learning, the latter of which can be con-
strued as carrying very direct process implications concerning
selective attention. J&L acknowledge the potential of these
approaches for transcending computational level theories but
do not acknowledge the role of the computational theories for
driving research in this direction.

One area where Bayesian perspectives appear particularly
more illuminating than mechanistic approaches is in explaining
individual differences. For example, work from within the knowl-
edge partitioning framework has repeatedly found large differ-
ences in transfer performance in tasks that can be decomposed
into a number of simpler sub-tasks (e.g., Lewandowsky et al.
2002; 2006; Yang & Lewandowsky 2003). Mechanistic modeling
of these results has highlighted the importance of modular archi-
tecture (Kalish et al. 2004; Little & Lewandowsky 2009), selective
attention (Yang & Lewandowsky 2004), and their interaction
(Sewell & Lewandowsky 2011) in accounting for such individual
differences. However, a significant limitation of a mechanistic
approach is that the solutions have been built into the models.
By contrast, recent Bayesian modeling of knowledge partitioning
has showed that many aspects of the individual differences
observed empirically emerge naturally if one assumes that
people are trying to learn about their environment in a rational
manner (Navarro 2010).

J&L draw uncharitable parallels between “Bayesian Funda-
mentalism” on the one hand, and Behaviorism, connectionism,
and evolutionary psychology on the other. In response, we note
that theoretical setbacks in those paradigms have clarified our
understanding of how the mind does and does not work. Conse-
quently, cognitive science has emerged with a more refined
theoretical toolkit and new, incisive research questions. For
Behaviorism, a restrictive theoretical stance solidified the need
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to consider more than just the history of reinforcement in
explaining behavior (Neisser 1967). The inability of the percep-
trons to handle nonlinearly separable problems forced connec-
tionists to consider more powerful model architectures
(Thomas & McClelland 2008). Likewise, controversies that
have erupted in evolutionary psychology over the propagation
of cognitive modules have forced theorists to refine and reevalu-
ate classical notions of modularity (cf. Barrett & Kurzban 2006;
Fodor 1983). Thus, the failures of the precedents chosen by
J&L actually constitute successes for the field; for example, the
cognitive revolution was propelled and accelerated by the specta-
cular failure of Behaviorism.

We close by considering how J&L’s critique of Bayesian Funda-
mentalism relates to scientific activity in practice. If they address
the scientific community as a whole, their criticism is powerful,
but lacks a real target. Alternatively, if J&L’s concerns are directed
at individual scientists, their plea overlooks the fact that scientific
progress, being inherently distributed across multiple research
groups, “averages out” individual differences in theoretical dispo-
sitions. That is, the aggregate outcomes produced by the scientific
community are unlikely to be reflected in the individual outcomes
produced by a given scientist (Kuhn 1970).

Whereas a complete level-spanning theory will always be the
goal of science, the approach toward that collective goal will be
incremental, and those pursuing it will tend to focus on a particu-
lar level of analysis. The important question for any individual
researcher is whether an adopted theoretical framework shar-
pens questions, provides insight, and guides new empirical
inquiry (Shiffrin et al. 2008); recent Bayesian modeling of cogni-
tion undoubtedly fulfills these requirements.

Is everyone Bayes? On the testable
implications of Bayesian Fundamentalism
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Abstract: A central claim of Jones & Love’s (J&L’s) article is that
Bayesian Fundamentalism is empirically unconstrained. Unless
constraints are placed on prior beliefs, likelihood, and utility functions,
all behaviour – it is proposed – is consistent with Bayesian rationality.
Although such claims are commonplace, their basis is rarely justified.
We fill this gap by sketching a proof, and we discuss possible solutions
that would make Bayesian approaches empirically interesting.

Although the authors are perhaps attacking a straw-man, we
agree with many points raised in Jones & Love’s (J&L’s) critique
of “Bayesian Fundamentalism.” It is our objective here to
strengthen their claim that Bayesian Fundamentalism is empiri-
cally unconstrained; although such claims are often made, their
basis is not usually fleshed out in any detail. This is such a key
part of the case that we sketch a proof and discuss possible
solutions.

Without placing constraints on prior beliefs, likelihood, and
utility functions, claims of Bayesian rationality are empirically
empty: any behaviour is consistent with that of some rational
Bayesian agent. To illustrate this point, consider a simple prob-
ability learning task in which a participant has two response
options (e.g., press a left or a right button), only one of which
will be rewarded. On each trial t, the participant gives a response
xt ¼ f0,1}, and then observes the placement of the reward
yt ¼ {0,1}, which is under control of the experimenter. The ques-
tion is whether the assumption of Bayesian rationality places any

restrictions on the response sequence for a given reward
sequence.

In Bayesian inference, the prior distribution and likelihood
(model of the task) assign a probability P(yt¼ Sj) to each possible
reward sequence. Without further constraints, we can take this
probability to be proportional to a value vj � 0. After observing
y1, some of the rewarded sequences are impossible, and learning
consists of setting the probability of these sequences to 0 and
then renormalizing. For example, consider a task with three
trials. The possible reward (and response) sequences are given
in Table 1. Assume the sequence of rewards is y ¼ S1. After
observing y1 ¼ 0, S5 to S8 are impossible and the posterior prob-
abilities become P(Sjjy1) ¼ vj/Skvk, for j, k ¼ 1, . . ., 4, and
P(Sjjy1)¼0 for j ¼ 5, . . ., 8. After observing y2 ¼ 0, S3 and S4

are also impossible, and the posterior probabilities become
P(Sjjy1) ¼ vj/Sjvk, for j, k ¼ 1, 2, and P(Sjjy1) ¼ 0, for j ¼ 3,
4. After observing y3 ¼ 0, only S1 remains with a probability 1.

A rational Bayesian agent gives responses which maximise his or
her subjective expected utility, conditional upon the previously
observed rewards. For simplicity, assume the utility of a correct
prediction is u(yt ¼ xt)¼1 and that of an incorrect prediction is
u(yt = xt) ¼ 0, so that the expected utilities correspond to the pos-
terior predicted probabilities of the next reward. The crucial point
is that in this general setup, we can always choose the values vj to
make any sequence of responses xt conform to that of a maximizer
of subjective expected utility. For example, suppose the sequence
of rewards is S1 and the sequence of responses is S8. The
first response x1¼1 implies that v1þ v2þ v3þ v4v5v6v7v8; the
second response x21 implies that v1v2v3v4; the third response
x3 1 implies that v1v2. One choice of values consistent with this
is vjj. For any response sequence, we can choose values which
adhere to such implied inequalities, so behaviour is always consist-
ent with a rational Bayesian agent. Although we have considered a
rather simple situation with a small number of trials, this result
generalizes readily to other sequential learning tasks such as cat-
egory learning (for a related, more general and formal proof,
see, e.g., Zambrano 2005). The problem becomes even more
severe if we allow the utilities to depend on previous outcomes,
which may not be entirely implausible (e.g., a third misprediction
in a row may be more unpleasant than the first).

One may object that the particular method of Bayesian infer-
ence sketched here is implausible: Would someone really assign
probabilities to all possible reward sequences? Maybe not expli-
citly, but in an abstract sense, this is what Bayesian modelling
boils down to. Granted, the values assigned have been arbitrary,
but that is exactly the point: Bayesian rationality is silent about
the rationality of priors and likelihoods, yet some of these seem
more rational than others. Thus, rationality hinges on more than
adherence to Bayesian updating and utility maximization.

Is the claim of Bayesian inference and decision making always
empirically empty? No. For instance, the assumption that
rewards are exchangeable (that they can be reordered without
affecting the probabilities) places equivalence restrictions on
the values v such that, given a sufficient number of trials, some
response sequences would violate utility maximization. Exchan-
geability is crucial to the convergence of posterior probabilities
and the decisions based on them. Another option would be to
let participants make multiple decisions while keeping their

Table 1 (Speekenbrink & Shanks). Possible reward and response
sequences (Sj) in a simple learning task with three trials (t)

t S1 S2 S3 S4 S5 S6 S7 S8

1 0 0 0 0 1 1 1 1
2 0 0 1 1 0 0 1 1
3 0 1 0 1 0 1 0 1
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information base (posterior probabilities) constant, so that
intransitive decisions become possible. More generally, testable
conditions of Bayesian rationality can be found in the axioms of
subjective expected utility theory (e.g., Savage 1954). Empirically
meaningful claims of Bayesian rationality should minimally
ensure the possibility that the data can falsify these axioms. Axio-
matic tests are “model-free” in the sense that they do not rely on a
particular choice of prior distribution and utility function. Such
tests should be a first step in rational analysis; if the assumption
of Bayesian rationality is not rejected, one can then look for
priors and utilities which match the observed behaviour. Given
rich-enough data, this search can be guided by conjoint measure-
ment procedures (e.g., Wallsten 1971).

To conclude, while “Bayesian Fundamentalism” is generally
unconstrained, by placing appropriate restrictions, the assump-
tion of Bayesian rationality is subject to empirical testing and,
when not rejected, can help guide model building.

Post hoc rationalism in science
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Abstract: In advocating Bayesian Enlightenment as a solution to
Bayesian Fundamentalism, Jones & Love (J&L) rule out a broader
critique of rationalist approaches to cognition. However, Bayesian
Fundamentalism is merely one example of the more general
phenomenon of Rationalist Fundamentalism: the tendency to
characterize human judgments as rational and optimal in a post hoc
manner, after the empirical data are already known.

Jones & Love (J&L) are right to criticize what they term “Baye-
sian Fundamentalism” as not empirically grounded, uninformed
by psychological data, open to multiple rational accounts of a task
or decision, and conducive to post hoc explanations. However, in
advocating Bayesian Enlightenment as a solution, they appear to
rule out a broader critique of rationalist approaches to human
cognition. Specifically, Bayesian Fundamentalism is one
example of the more general phenomenon of Rationalist Funda-
mentalism: the tendency to characterize a given judgment as
rational and optimal in a post hoc manner, after the empirical
data are already known. Few researchers would argue that
human behavior is perfectly optimal and rational. However, a
desire to see the human mind as operating rationally, and the
use of post hoc justifications to reach this conclusion, suggest
we should be skeptical of after-the-fact “rational” explanations.

Decades of empirical studies show people are strongly motiv-
ated to see themselves as rational and objective (for reviews, see
Armor 1999; Pronin et al. 2004; Pyszczynski & Greenberg 1987;
Ross & Ward 1996). Decision makers engage in motivated
reasoning and psychological rationalizations designed to preserve
this “illusion of objectivity” (Armor 1999; Pronin et al. 2002) –
for instance, changing their definition of what an optimal judg-
ment is after the fact (Dunning & Cohen 1992; Epstein et al.
1992; Kunda 1987; Norton et al. 2004; Uhlmann & Cohen
2005). Evidence that general psychological processes are not
rational or optimal represents a threat to this cherished illusion.
Fundamentalist resistance to evidence of human irrationality
further stems from economics and related disciplines, in which
optimality and the maximization of utility are widely perceived
as necessary assumptions about human behavior.

A rationalist defense can involve constructing a post hoc Baye-
sian account of an empirical finding predicted a priori from

theories grounded in psychological limitations and motives. Con-
sider the phenomenon of biased assimilation, in which participants
rate a scientific study that supports their political beliefs (e.g.,
about the deterrent effects of capital punishment) as methodologi-
cally superior to a study that refutes their beliefs (Lord et al. 1979).
The cognitive-rationalist interpretation is that decision makers are
simply making Bayesian inferences, taking into account subjective
probabilities (e.g., their prior political beliefs) when evaluating
new evidence. However, further findings contradict the claim
that biased assimilation is merely the product of Bayesian infer-
ences. For instance, individuals whose positive self-image is
affirmed are less likely to exhibit biased assimilation (Cohen
et al. 2000; see also Dunning et al. 1995; Sherman & Cohen
2002). This is consistent with the idea that biased information pro-
cessing stems from a motivated desire to dismiss evidence that
threatens valued beliefs and, by extension, the self (Sherman &
Cohen 2006; Steele 1988). When a decision maker is feeling
good about herself, there is less need to be biased. In addition,
would-be parents who believe day care is bad for children, but
plan to use day care themselves (and therefore desire to conclude
that day care is just as good as home care), show biased assimila-
tion in favor of day care (Bastardi et al. 2011). What decision
makers desire to be true seems to trump what they believe to be
factually true – the ostensive basis for any Bayesian inferences.

As J&L point out, one of the most problematic aspects of rational
models is how little attention can be paid to whether the assump-
tions of the statistical model correspond to what is actually going on
in people’s heads as they engage in a task or make a decision. I once
debated an economist who argued that micro-level psychological
data on what goals people pursue in the dictator game are irrele-
vant: The material self-interest account must be true if people’s
offers correspond to the predictions of the statistical model.
However, it is dangerous to assume that because a rational statisti-
cal model can mimic or reproduce a pattern of data, the underlying
psychological process is a rational one. That a computer can mimic
some of the outputs of human thought does not necessarily mean
the mind functions in the same way as a computer.

The last defense of post hoc rationalism is to swap normative
models of rationality entirely. In other words, researchers can
speculate post-hoc as to what alternative goals decision-makers
may have been pursuing, in order to preserve the view that par-
ticipants were acting rationally. Never mind the goals to optimize
material outcomes or achieve accuracy: Judgmental biases can be
defined as “rational” because they preserve the decision maker’s
personal self-image, psychological well-adjustment, public repu-
tation, cherished religious beliefs, desire to punish norm viola-
tors, existential goals, likelihood of survival in ancestral
environments, or even the happiness of their marriage (Cosmides
& Tooby 1994; Hamilton 1980; Krueger & Funder 2004; Lerner
& Tetlock 1999; Tetlock 2002; Tetlock et al. 2000; 2007).

It has been argued that the heuristics-and-biases approach to
cognition is itself biased, in the direction of attributions to irra-
tionality (Krueger & Funder 2004). Despite its shortcomings,
however, the heuristics-and-biases research program is at least
based on a priori theoretical hypotheses. There are few cases of
“post hoc irrationalism” in which robust empirical effects pre-
dicted a priori by Bayesian or otherwise rationalist models are
redefined post hoc as due to motives such as the need for self-
esteem or control.

Although Bayesian Enlightenment, as advocated by J&L, is a
major improvement on Bayesian Fundamentalism, it is still
subject to post hoc rationalism. An interface between Bayesian
or otherwise rationalist models and data on psychological pro-
cesses leaves plenty of room for the former to distort interpret-
ations of the latter. A wealth of evidence indicates that human
beings are subject to a powerful illusion of rationality and objec-
tivity they are strongly motivated to maintain and which influ-
ences their perceptions of scientific data. Researchers are also
human beings. It would be remarkable indeed if scientists were
immune to the empirical phenomena we study.

Commentary/Jones & Love: Bayesian Fundamentalism or Enlightenment?

214 BEHAVIORAL AND BRAIN SCIENCES (2011) 34:4



Authors’ Response

Pinning down the theoretical commitments
of Bayesian cognitive models

doi:10.1017/S0140525X11001439

Matt Jonesa and Bradley C. Loveb

aDepartment of Psychology and Neuroscience, University of Colorado,

Boulder, CO 80309; bDepartment of Psychology, University of Texas, Austin,

TX 78712

mcj@colorado.edu brad_love@mail.utexas.edu

Abstract: Mathematical developments in probabilistic
inference have led to optimism over the prospects for
Bayesian models of cognition. Our target article calls for
better differentiation of these technical developments from
theoretical contributions. It distinguishes between Bayesian
Fundamentalism, which is theoretically limited because of its
neglect of psychological mechanism, and Bayesian
Enlightenment, which integrates rational and mechanistic
considerations and is thus better positioned to advance
psychological theory. The commentaries almost uniformly
agree that mechanistic grounding is critical to the success of
the Bayesian program. Some commentaries raise additional
challenges, which we address here. Other commentaries claim
that all Bayesian models are mechanistically grounded, while
at the same time holding that they should be evaluated only
on a computational level. We argue this contradictory stance
makes it difficult to evaluate a model’s scientific contribution,
and that the psychological commitments of Bayesian models
need to be made more explicit.

R1. Introduction

The rapid growth of Bayesian cognitive modeling in recent
years has outpaced careful consideration and discussion of
what Bayesian models contribute to cognitive theory. Our
target article aimed to initiate such a discussion. We
argued there is a serious lack of constraint in models
that explain behavior based solely on rational analysis of
the environment, without consideration of psychological
mechanisms, but that also fail to validate their assumptions
about the environment or the learner’s goals.
We referred to the approach of Bayesian modeling without
consideration of mechanism as Bayesian Fundamentalism.
We went on to advocate an approach we labeled Bayesian
Enlightenment, in which elements of a Bayesian model are
given a psychological interpretation, by addressing how
the learner’s hypotheses are represented, where they
come from, what the learner’s goals are, and how inference
is carried out. Although several commentators argue for
further challenges or shortcomings, no serious challenge
was offered to the conclusion that, at the least, Bayesian
models need this type of grounding. Primarily, the com-
mentaries serve to reinforce, in various ways, the idea
that it is critical to be clear on the psychological commit-
ments and explanatory contributions of cognitive models.

Technical breakthroughs can often enable new theoreti-
cal progress, by allowing researchers to formalize and test
hypotheses in ways that were not previously possible.
Thus, development of new formal frameworks can be
important to the progress of the field as a whole
(Chater, Goodman, Griffiths, Kemp, Oaksford, &

Tenenbaum [Chater et al.]; Navarro & Perfors).
However, technical advances are not theories themselves,
and there is a real danger in confusing the two. As cogni-
tive scientists well know, it is critical for modelers to clarify
which aspects of a model are meant as psychological com-
mitments and which are implementation details. For
example, sophisticated sampling methods for estimating
posterior distributions enable derivation of predictions
from complex Bayesian models that were previously
intractable. However, if these approximation algorithms
are not intended as psychological mechanisms, then any
deviations they produce from optimality should not be
taken as necessary predictions of the model. Likewise,
probabilistic methods for specifying priors over structured
hypotheses may enable computational analysis of new
learning domains. Again, if the particular assumptions
built into the hypothesis space are not meant as claims
about the learner’s knowledge or expectations (i.e., other
choices would have been equally reasonable), then many
predictions of the model should not be taken as necessary
consequences of the underlying theory. Thus, when
implementation decisions are not clearly separated from
theoretical commitments, one cannot tell what the
model’s real predictions are, or, consequently, how it
should be tested. For the same reasons, it can be
unclear what new understanding the model provides, in
terms of what was explained and what the explanation is
(Rehder). In short, one cannot evaluate the model’s scien-
tific contribution.

In this reply, we argue there is still serious confusion
and disagreement about the intended status of most Baye-
sian cognitive models. We then evaluate the potential
theoretical contribution of Bayesian models under differ-
ent possible interpretations. When Bayesian models are
cast at a purely computational level, they are mostly
empty. When Bayesian models are viewed as process
models, they have potentially more to say, but the interest-
ing predictions emerge not from Bayes’ rule itself but from
the specific assumptions about the learner’s hypotheses,
priors, and goals, as well from questions of how this infor-
mation is represented and computed. Thus, we advocate
shifting attention to these assumptions, viewed as psycho-
logical commitments rather than technical devices, and we
illustrate how this stance shifts attention to important
psychological questions that have been largely neglected
within the Bayesian program to date. Finally, we consider
several other challenges raised to the Bayesian program,
and specifically to the proposed integration with mechan-
istic approaches that we labeled Bayesian Enlightenment.
We conclude that the Bayesian framework has potential to
add much to cognitive theory, provided modelers make
genuine psychological commitments and are clear on
what those commitments are.

R2. Theoretical status of Bayesian models

A primary confusion surrounding Bayesian cognitive
models is whether they are intended as purely compu-
tational-level theories, or whether certain components of
the model are to be taken as claims regarding psychologi-
cal mechanism. Specifically: Are hypotheses and priors
assumptions about the environment or the learner? That
is, are they devices for the modeler to specify the
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assumed statistical structure of the environment, or are
they meant as psychological constructs? Are algorithms
for approximating optimal inference to be viewed as
tools for deriving model predictions or as psychological
processes? More broadly, does the brain represent infor-
mation in terms of probabilities, or does it just behave as
though it does? Unfortunately, these questions are not
always answered, and those answers that are given are
often contradictory. This state of affairs seriously limits
scientific evaluation of Bayesian models and makes it diffi-
cult to determine their explanatory contribution.

For all of our criticisms of J. R. Anderson’s (1990)
rational analysis in the target article, his viewpoint is
clear and coherent. According to J. R. Anderson, rational
models are distinguished from mechanistic models in
that rational models do not make reference to mental rep-
resentations or processes. Instead, these models specify
relevant information structures in the environment and
use optimal inference procedures that maximize perform-
ance for the assumed task goal. We labeled this view (in
the context of probabilistic models) as Bayesian Funda-
mentalism in the target article and offered an unfavorable
critique. On the positive side, the fundamentalist view is
theoretically clear, whereas much of contemporary Baye-
sian modeling is not.

Indeed, we find many of the commentaries theoretically
confusing and contradictory. Certainly, self-identified
Bayesian advocates contradict one another. For example,
Gopnik states that Bayesian models have psychological
representations but not processes, whereas Borsboom,
Wagenmakers, & Romeijn (Borsboom et al.) claim
they are not representational but are process models.
Borsboom et al.’s position is particularly curious because
they assert that a Bayesian model is a process model but
not a mechanistic model. This position contradicts their
own definitions, as it is impossible to specify the state
dynamics of a system (the process model, their terms)
without specifying the system itself (the mechanism).

These different views on what constitutes a Bayesian
model highlight that the theoretical underpinnings of
models are not always as clear as one would hope. In
mechanistic models, it is clear that key processing and rep-
resentation claims involve postulated mental entities. In
the fundamentalist rational view, it is clear that process
and representation do not refer to mental entities. Unfor-
tunately, many Bayesian models seem to waver among
various intermediate positions. For example, positing one
component of a model (e.g., process or representation)
as a mental entity and the other as not, may evoke Carte-
sian dualism, in which ontologically different entities (e.g.,
non-physical and physical) interact. If one is not careful
about the statuses of all model components, it is easy for
them to slip from one to the other, making the model’s
position and contribution uncertain. Therefore, more
care needs to be taken in spelling out exactly what kind
of model one is specifying and its intended contribution
(Bowers & Davis; Fernbach & Sloman).

Part of this confusion arises because terms like “rep-
resentation” mean different things to different self-ident-
ified Bayesians and, more worrisome, can shift meaning
within a single contribution. To be clear, mental represen-
tations (as opposed to mathematical representations of
probability distributions in the world) are in the head
and are acted on by mental processes. For example, in

the Sternberg (1966) model of short-term memory, the
mental representation of items in short-term memory con-
sists of an ordered buffer that is operated over by an
exhaustive search process. This is not a model of optimal
inference based on environmental regularities but is,
instead, an account of how information is represented
and manipulated in the head. The specified mental pro-
cesses and representations make predictions for response
time and error patterns, and these predictions can be used
to evaluate the model and explore implementational
questions.

We find the slipperiness and apparent self-contradic-
tions of some Bayesian proposals regarding their psycho-
logical status to be theoretically unhelpful. For example,
Chater et al. state that, unlike Behaviorism, Bayesian
cognitive science posits mental states, but then they con-
tradict this position by stating that these theories are posi-
tioned at a computational level (in the sense of Marr 1982)
and don’t need to address other levels of explanation. We
agree with Chater et al. that technical advances have led to
a greater range of representations in Bayesian models, but
if these models reside at the computational level then
these are representations of probability distributions, not
mental representations. That is, they reside in the head
of the researcher, not the subject. Finally, Chater et al.
emphasize the importance of descriptions of structured
environments in the sense of J. R. Anderson’s (1990)
rational program (i.e., Bayesian Fundamentalism), which
again contradicts claims that the Bayesian models they
discuss have mental representations. There are many
interesting ideas in this commentary, but it is impossible
to integrate the points into a coherent and consistent
theoretical picture.

We agree with Fernbach & Sloman that “modelers
are not always as clear as they should be about whether
these hypotheses represent psychological entities or
merely a conceptual analysis of the task (or both), and
the import of the model does depend critically on
that.” However, even these commentators confuse the
status of Bayesian constructs. Fernbach & Sloman
claim that Bayesian hypotheses constitute more than
probability distributions over data; that, instead, they
always correspond to psychological constructs or
mental models relevant to the task in question – in
direct contradiction to the previous quote from their
commentary. If hypotheses are not psychological con-
structs, then indeed they are nothing but elements of
the probabilistic calculus the modeler uses to derive pre-
dictions from the model. It should not be controversial
that many Bayesian models used in ideal observer ana-
lyses do not contain mental representations, but are
instead models of the task environment, just as it is
uncontroversial that Bayesian models used in physics,
chemistry, credit fraud detection, and so forth, do not
contain mental representations.

Even within the cognitive sciences, Bayesian methods
are often used as analysis tools (see discussion of “Agnostic
Bayes” in the target article) that are not intended as
psychological theories. Indeed, as Lee discusses, such
methods provide a powerful means for evaluating all
types of models. Lee notes that, oddly, many articles
hold up Bayesian inference as the paragon of rationality
and then test their models by using Frequentist statistics.
This practice makes one wonder how strongly Bayesian

Response/Jones & Love: Bayesian Fundamentalism or Enlightenment?

216 BEHAVIORAL AND BRAIN SCIENCES (2011) 34:4



modelers truly believe in the rational principles of their
theories. Lee’s proposal to use Bayesian model selection
to evaluate Bayesian cognitive models seems more self-
consistent, and we agree that the Bayesian approach
offers many useful tools for evaluating and comparing
complex models (although some of the advantages he
cites, such as parameter estimation and testing hierarchi-
cal models, are also compatible with maximum-likelihood
techniques and Frequentist statistics).

As commentators Glymour, Rehder, and Rogers &
Seidenberg have highlighted, it can be difficult to know
what one is to take away from some Bayesian accounts.
As these commentators discuss, hugely complex hypoth-
esis spaces are often proposed but with no claim that
people perform inference over these spaces in the
manner the models do; and any connection with neuro-
science is disavowed in favor of theory residing solely at
the computational level. When models do make connec-
tions with broader efforts, the message can become con-
fused. For example, Borsboom et al. assert that
mechanisms for belief updating reside in the brain and
can be studied to provide support for Bayesian models,
but they then appeal to notions of optimality, stating that
the substrate of computation is completely unimportant
and only fitting behavioral data matters.

In conclusion, although we provide ample examples of
Bayesian Fundamentalist contributions in the target article,
we might have to agree with those commentators (Chater
et al.; Gopnik; Sewell, Little, & Lewandowsky [Sewell
et al.]) who argue there are no Bayesian Fundamentalists,
because it is not always clear what position many Bayesians
support. This lack of theoretical clarity is potentially a
greater threat to theoretical progress than is the Bayesian
Fundamentalist program itself. When the intended status
of a Bayesian model is not made explicit, assumptions such
as the choice of goals and hypothesis space can be referred
to in vague language as constituting knowledge or represen-
tation, but when the assumptions are contradicted by data,
the modeler can fall back on the computational position
and say they were never intended to be psychologically
real. The result is a model that appears to have rich represen-
tational structure and strong psychological implications, but
which, when prodded, turns out to be quite empty.

R3. Bayesian models as computational-level
theories

Setting aside how Bayesian models have been intended –
which we have argued is often unclear – we now evaluate
their potential theoretical contribution under a purely com-
putational-level interpretation. By the “computational level”
we mean the standard position taken by rational analysis
(e.g., J. R. Anderson 1990) that one can explain aspects of
behavior solely by consideration of what is optimal in a
given environment, with no recourse to psychological con-
structs such as knowledge representation or decision pro-
cesses. Our aim is to draw out the full implications of this
position once a Bayesian model is truly held to it, rather
than being afforded the sort of slipperiness identified
earlier. As Norris points out, J. R. Anderson was aware of
and cautioned against many of the limitations of his rational
approach, but much of that message seems to have been lost
amidst the expressive power of the Bayesian framework.

It is generally recognized that the specific represen-
tations of hypotheses and the algorithms for updating
belief states are not meant as psychological commitments
of a computational-level Bayesian model. However, the
situation is more severe than this, because on a true com-
putational-level stance the entire Bayesian calculus of
latent variables, hypotheses, priors, likelihoods, and pos-
teriors is just an analytic device for the modeler. Priors
and likelihoods (as well as any hierarchical structure in
the hypothesis space) are mathematically equivalent to a
“flat” or unstructured model that directly specifies the
joint distribution over all observations. Computing a pos-
terior and using it to predict unobserved data is equivalent
to calculating the probabilities of the unobserved data con-
ditioned on observed data, with respect to this joint distri-
bution. If process is irrelevant, then these conditional
probabilities are the only content to a Bayesian model.
That is, the model’s only assertion is that people act in
accordance with probabilities of future events conditioned
on past events. In other words, people use past experience
to decide what to do or expect in the future. The model
says nothing whatsoever beyond this extremely general
position, other than that decisions are optimal in a prob-
abilistic sense, due to unspecified processes and with
respect to (usually) unvalidated assumptions about the
statistics of the environment.

Contrary to Chater et al.’s claim, this interpretation of
a Bayesian model is very much like Behaviorism in its
deliberate avoidance of psychological constructs. To
argue, as Chater et al. do in point (iii) of their commen-
tary’s section 2, that “Behaviorists believe that no such
computations exist, and further that there are no internal
mental states over which such computations might be
defined” is a misreading of Behaviorist philosophy. The
actual Behaviorist position (e.g., Skinner 1938) was that
psychological states are unobservable (not nonexistent)
and hence should not be elements of scientific theories,
and that behavior should be explained directly from the
organism’s experience. This position aligns very closely
with the motivations offered for computational-level mod-
eling based on rational analysis (e.g., J. R. Anderson 1990).
Although Bayesian modeling generally involves significant
computation, if the models are to be interpreted at the
computational level, then by definition these computations
have nothing to do with psychological states.

As noted in the target article, a strong case has been
made that probabilistic inference is the best current fra-
mework for normative theories of cognition (Oaksford &
Chater 2007). However, this observation does not say
much about actual cognitive processes or the represen-
tations on which they operate. To state, as Edelman &
Shahbazi do, that all viable approaches ultimately
reduce to Bayesian methods does not imply that Bayesian
inference encompasses their explanatory contribution.
Such an argument is akin to concluding that, because
the dynamics of all macroscopic physical systems can be
modeled using Newton’s calculus, or because all cognitive
models can be programmed in Python, calculus or Python
constitutes a complete and correct theory of cognition.
This is not to say the rational principles are irrelevant,
but they are not the whole story.

Furthermore, although ecological rationality can be a
powerful explanatory principle (e.g., Gibson 1979;
Gigerenzer & Brighton 2009), most Bayesian cognitive
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models fail to realize this principle because they are not
based on any actual measurement of the environment.
This is a serious problem for a Bayesian model inter-
preted at the computational level, because, as just
explained, statistical properties of the environment
(specifically, probabilities of future events conditioned
on past events), together with the learner’s goals, consti-
tute the entire content of the model. The fact that these
properties are free to be chosen post hoc, via specifica-
tion of hypotheses and priors, significantly compromises
the theoretical contributions of Bayesian models
(Anderson; Bowers & Davis; Danks & Eberhardt;
Glymour; Rehder; Rogers & Seidenberg). The
sketch proof by Speekenbrink & Shanks shows how
nearly any pattern of behavior is consistent with Bayesian
rationality, under the right choice of hypotheses, priors,
and utility functions. Rehder goes as far as to suggest
viewing the Bayesian framework as a programming
language, in which Bayes’ rule is universal but fairly
trivial, and all of the explanatory power lies in the
assumed goals and hypotheses. Thus, the basis of these
assumptions requires far more scrutiny than is currently
typical.

As with any underconstrained model, a Bayesian model
developed without any verification of its assumptions is
prone to overfit data, such that it is unlikely to extend to
new situations. Hence, whereas Borsboom et al. argue
that Bayesian models should not be constrained by mech-
anism as long as they can match existing data, we suggest
such an approach is unlikely to predict new data correctly.
The observations by Jenkins, Samuelson, & Spencer
(Jenkins et al.) on the fragility of the suspicious coinci-
dence effect in word learning illustrate this point.

The flexibility of rational explanation rears its head in
other ways as well. At an empirical level, Uhlmann
reviews evidence that people often change their goals to
justify past decisions, a phenomenon that is difficult for
any rational model to explain naturally. At a metatheoreti-
cal level, Uhlmann notes, “It would be remarkable indeed
if scientists were immune to the empirical phenomena we
study.” Therefore, although rational principles are clearly
an important ingredient in explaining cognition, cognitive
scientists might be well advised to guard against a ten-
dency to disregard all of the ways and mechanistic
reasons that people are irrational.

Despite these dangers of a purely computational
framing, the mathematical framework of probabilistic
inference does have advantages that are not dependent
on specification of psychological mechanism. One impor-
tant principle is the idea that the brain somehow tracks
uncertainty or variability in environmental parameters,
rather than just point estimates. This insight has been
influential in areas such as causal induction (Holyoak &
Lu), but it is also not new (e.g., Fried & Holyoak 1984).
Another strength of the Bayesian framework is that it
offers natural accounts of how information can be com-
bined from multiple sources, and in particular, how
people can incorporate rich prior knowledge into any
learning task (Heit & Erickson). However, this potential
is unrealized if there is no independent assessment of what
that prior knowledge is. Instead, the expressive flexibility
of Bayesian models becomes a weakness, as it makes
them unfalsifiable (Bowers & Davis; Danks & Eber-
hardt; Glymour; Rogers & Seidenberg). In some

cases, the assumptions of a Bayesian model are demonstra-
bly false, as Rehder points out in the case of mutual exclu-
sivity in categorization models, but even then the
conclusion is unclear. Was the failed assumption theoreti-
cally central to the model, or just an implementation detail
of a more general theory that might still hold? If so, what is
that general theory that remains after the particular
assumptions about the hypothesis space are set aside?
Under a computational-level stance, all that is left is the
claim of optimality with respect to an unspecified environ-
ment, which is no theory at all.

Shifting from issues of representation to the decision
process itself, Danks & Eberhardt and Glymour point
out that even the empirical evidence used to support Baye-
sian models often seriously undermines the claim of Baye-
sian rationality. Specifically, arguments for Bayesian
models often take the form that empirical choice probabil-
ities align with probabilities in the model’s posterior distri-
bution. The reasoning seems to be that subjects are
choosing in accordance with that posterior and are thus
behaving consistently with Bayesian inference. However,
a true rational account predicts no such behavior.
Instead, subjects should be expected to maximize reward
on every individual trial (i.e., to behave deterministically).
The standard normative explanation for probability match-
ing – which is endemic in psychology – is based on the
need for exploration (e.g., Cohen et al. 2007), but this
idea is not formalized in most Bayesian models. More
importantly, feedback is independent of the subject’s
action in many laboratory tasks (e.g., those involving
binary choice), which renders exploration irrelevant.
Thus, normative ideas about exploration have been
extended beyond their domain of applicability, partly
because the connection between rational inference and
actual choice behavior is not explicitly worked out in
most Bayesian models.

Finally, Al-Shawaf & Buss and Pietraszewski & Wertz
point out (echoing many of the points in the target article)
that evolutionary psychology, the field that has most
thoroughly explored optimality explanations for behavior,
has come to a broad conclusion that one must consider
mechanism in order for optimality theories to be successful.
Explaining behavior from rational perspectives that eschew
mechanism is problematic, because behavior is not directly
selected but instead arises from selection operating on
mechanisms and their interactions with the environment
(see target article, sect. 5.3). Likewise, Anderson argues
that measuring the environment is not always enough
because there is still the problem of identifying the
natural tasks that shaped evolution. Bayesian inference is
a powerful tool for developing ideal observers once the evo-
lutionarily relevant task has been identified, but it provides
no help with the identification problem itself.

In summary, when Bayesian models are interpreted on
a purely computational level and are held to that position,
they turn out to be quite vacuous. Bayesian rationality
reduces to the proposal that people act based on probabil-
ities of future events conditioned on past events, with no
further psychological implications. The derivation of
those probabilities is based on assumptions that are gener-
ally unconstrained and untested. Lastly, even when a
model is based on correct assumptions about the environ-
ment and the learner’s goals, global optimality taken alone
generally provides an inadequate explanation for behavior.
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R4. Bayesian models as mechanistic theories

The alternative to a purely computational-level interpret-
ation of a Bayesian model is to take one or more aspects
of the model as corresponding to psychological constructs.
In this section, we consider various such stances. We argue
that Bayesian models can make useful theoretical contri-
butions under these interpretations, but that those contri-
butions come not from Bayesian inference itself but from
other components of the models, which should be treated
as more theoretically central than they currently are. This
shift of emphasis can go a long way toward clarifying what
a Bayesian model actually has to say and how it relates to
previous proposals.

An obvious candidate within the Bayesian framework
for treatment as a psychological mechanism, and the one
most related to the idea of a unified Bayesian theory of
cognition, is the belief updating embodied by Bayes’ rule
itself. As explained in the target article (sect. 3), exact
Bayesian inference is equivalent to vote counting,
whereby the evidence (technically, log prior probability
and log likelihood) for each hypothesis is simply
summed over successive independent observations.
Chater et al. point out that many tasks addressed by
Bayesian models require joint posterior distributions to
be reduced to marginal distributions over single variables;
but this introduces little additional complexity – just an
exponential transform (from log posterior, the output of
vote counting, to posterior) and then more summation.
In most modern models, hypothesis spaces are continuous
and hence summation is replaced in the model by inte-
gration, but this is an unimportant distinction, especially
in a finite physical system. Therefore, the vote-counting
interpretation is valid even for the more complex Bayesian
models that have arisen in recent years.

Chater et al. go on to argue that much research with
Bayesian models posits more complex algorithms than
vote counting, for approximating posterior distributions
when exact calculation is infeasible. However, most
papers that use such algorithms explicitly disavow them
as psychological assumptions (e.g., Griffiths et al. 2007).
Instead, they are only meant as tools for the modeler to
approximate the predictions of the model. More recent
work that treats approximation algorithms as psychological
processes, takes their deviations from optimal inference as
real predictions, and compares alternative algorithms (e.g.,
Sanborn et al. 2010a) fits squarely into one of the
approaches that we advocated as Bayesian Enlightenment
in the target article (sect. 6.1).

Borsboom et al. write that the counting rule “seems
just about right,” and perhaps it is neurologically correct
in some cases (e.g., Gold & Shadlen 2001). However,
even if this is true, the counting rule is not where the
hard work of cognition is being done (Anderson). Like-
wise, although we fully agree with Chater et al. that inter-
esting behavior can emerge from simple rules, it is not the
counting rule that is responsible for this emergence; it is
the structure of the hypothesis space. As Gopnik points
out, “The central advance has not been Bayes’ law itself,
but the ability to formulate structured representations,
such as causal graphical models, or ‘Bayes nets’ (Pearl
2000; Spirtes et al. 2000), or hierarchical causal models,
category hierarchies or grammars.” Thus, as argued
above, the hypothesis space is where the interesting

psychology lies in most Bayesian models. If we consider
it a core assumption of a model, then the model makes
meaningful, testable predictions. Although most Bayesian
models cast their hypothesis spaces as components of
rational analysis and not psychological entities (or else
are noncommittal), one can certainly postulate them as
psychological representations (Heit & Erickson). This is
one way in which Bayesian models can potentially make
important contributions. Of course, the assumption of
optimal inference with respect to the assumed represen-
tation could be, and probably often is, wrong
(Uhlmann), but the important point for present purposes
is that this claim becomes testable once the learner’s rep-
resentations and goals are pinned down as psychological
commitments.

Therefore, casting assumptions about the hypothesis
space, as well as about priors and goals, as psychological
claims rather than merely elements of a rational analysis
could significantly strengthen the theoretical import of
Bayesian models. The problem, as argued above, is that
too much Bayesian research is unclear on the intended
psychological status of these assumptions (Bowers &
Davis; Fernbach & Sloman). This ambiguity distorts
the conclusions that can be drawn from such models.
Often the message of a Bayesian model is taken to be
that behavior in the domain in question can be explained
as optimal probabilistic inference. Instead, the message
should be that behavior can be explained as optimal infer-
ence, if the subject makes certain (often numerous and
highly specific) assumptions about the task environment
and is trying to optimize a particular function of behavioral
outcomes. Logically, the latter is a weaker conclusion, but
it is more nuanced and hence theoretically more substan-
tive. The situation would be much less interesting if the
correct theory of cognition were, “It’s all optimal infer-
ence, end of story.” Fortunately, that does not appear to
be the case, in part because of empirical findings that con-
tradict the predictions of specific rational models (Baetu,
Barberia, Murphy, & Baker [Baetu et al.]; Danks &
Eberhart; Glymour; Hayes & Newell; Jenkins et al.;
Uhlmann), but also because optimal inference is not
even a full-fledged theory until the learner’s goals and
background assumptions are specified.

Treating goals, hypotheses, and priors as part of the
psychological theory should encourage more consider-
ation of which assumptions of a Bayesian model are impor-
tant to its predictions and which are implementation
details. Recognizing this distinction is just good modeling
practice, but it is as important in Bayesian modeling as in
other frameworks (Fernbach & Sloman). Once this shift
of perspective is in place, other questions arise, such as
how the learner acquired the structural knowledge of
the environment embodied by the proposed hypothesis
space (or whether it is innate) and how it compares to
knowledge assumed by other theories. Questions of this
type are not often addressed in the context of Bayesian
models, but taking them into consideration could
help the models become much more psychologically
complete.

To revisit our example from the target article of Kemp
et al.’s (2007) model of second-order generalization in
word learning, the model assumes there is potential regu-
larity across named categories in terms of which object
dimensions are relevant to defining each category. This
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is a critical assumption of the model, in that it drives the
model’s most important predictions, and without it
the model would not reproduce the core phenomenon –
the shape bias in children’s word learning – that it was
developed to explain. Thus, the conclusion to be taken
from the model is not that the shape bias is a direct conse-
quence of optimal probabilistic inference, or even that the
shape bias is a consequence of optimal inference allowing
for overhypotheses across categories, but that the shape
bias is consistent with optimal inference if the learner
assumes potential regularity across categories in terms of
dimension relevance. The question is, therefore, how to
regard this last claim. From a strict rationalist perspective,
it follows directly from the structure of the environment.
This stance is problematic, as already noted, because the
relevant property of the environment was not empirically
verified in this case.

An alternative position is that the learner’s expectation
of dimensional regularity across categories is a psychologi-
cal claim. This perspective takes the model out of the pure
computational level and creates a starting point for
mechanistic grounding. This move has three advantages:
It clarifies what the model does and does not explain,
identifies important questions remaining to be answered,
and facilitates comparison to other models cast in different
frameworks. Regarding the first two of these points, the
model demonstrates that second-order generalization
emerges from Bayesian inference together with the expec-
tation of dimensional regularity, but many other questions
remain, such as: How does the learner know to expect this
particular regularity in the environment? How does he or
she verify the pattern is present in the input data? (Like
most Bayesian models, the model takes p[data j hypoth-
esis] as a starting point, without reference to how this con-
ditional probability is evaluated.) How does the learner
produce new responses consistent with what he or she
has inferred? These are all natural questions from a
mechanistic perspective, and the model would be much
stronger if it included answers to them.

As Jenkins et al. explain, the structure discovered by
Bayesian models of development does not truly develop
or emerge. It is built in a priori. All a Bayesian model
does is determine which of the patterns or classes of pat-
terns it was endowed with is most consistent with the data
it is given. Thus, there is no explanation of where those pat-
terns (i.e., hypotheses) come from. Once one realizes that
the structure built into the (over)hypothesis space is at
the core of the model’s explanation, it is natural to
compare those assumptions with the knowledge assumed
within other theoretical frameworks (the third advantage
listed in the previous paragraph). In the case of models of
second-order generalization, such comparisons lead to rec-
ognition that the structural knowledge built into Kemp
et al.’s (2007) overhypothesis space is essentially the same
as that embodied by previous theories based on attention
and association learning (Smith et al. 2002). One can then
inquire about the source of this knowledge. Whereas the
Bayesian model is silent on this question, subsequent
work on the attentional model has suggested ways it could
emerge from simpler learning processes (Colunga &
Smith 2005). Although Colunga and Smith’s model may
not represent the final answer, it at least attempts to
explain what Kemp et al.’s model merely assumes. Thus,
taking a mechanistic stance toward Kemp et al.’s model

clarifies its contribution but also reveals important ques-
tions it fails to address. This is not an unavoidable weakness
of the Bayesian approach, but it does suggest that applying
more scrutiny to the assumptions of Bayesian models would
start them on a path toward providing more complete
psychological explanations.

Hayes & Newell offer a similar analysis of J. R.
Anderson’s (1991b) rational model of categorization.
Beyond the several lines of empirical evidence they offer
against the rational model, the important point for the
present argument is that these issues are not even considered
until one pins down the psychological commitments of the
model. That the model generates predictions by averaging
over hypotheses (instead of using the most likely possibility;
cf. Murphy & Ross 2007), that it does not allow for within-
cluster feature correlations, and that what it learns is inde-
pendent of the prediction task it is given (cf. Love 2005),
are all strong assumptions. The crucial role of these assump-
tions can easily be overlooked when they are viewed as
merely part of the rational analysis, but if viewed as psycho-
logical claims they open up the model to more careful evalu-
ation and further development.

In conclusion, Bayesian models may have significant
potential if cast as mechanistic theories. Framing hypoth-
esis spaces as psychological commitments regarding the
background knowledge and expectations of the learner
seems particularly promising, as it mitigates many of the
weaknesses of Bayesian Fundamentalism and opens up
the models to the same sort of scientific evaluation used
for other approaches. This stance also raises other ques-
tions, perhaps most importantly as to where the back-
ground expectations (i.e., the environmental structure
embodied by the hypothesis space) come from, as well
as how that knowledge is represented and how it compares
to assumptions of previous theories. These questions have
received little attention but could make Bayesian theories
much more powerful and complete if answered. In
general, Bayesian models have not yet delivered much
on the mechanistic level, but we suspect this is due
more to their not having been pushed in this direction
than to any inherent limitation of the approach.

R5. Prospects for integration

The preceding sections argue that Bayesian models can
potentially contribute much to cognitive theory, but they
must be tied down to explicit psychological commitments
for this potential to be realized. The target article pro-
posed several specific avenues for integration of rational
and mechanistic approaches to cognitive modeling, and
we are encouraged by the general consensus among com-
mentators that these approaches, which we referred to as
Bayesian Enlightenment, embody the proper psychologi-
cal role of Bayesian models in cognitive science (Chater
et al.; Danks & Eberhardt; Edelman & Shahbazi;
Gopnik; Herschbach & Bechtel; Holyoak & Lu;
Navarro & Perfors; Rehder). Some research in this
vein is already underway, and we hope the present dialo-
gue helps to focus the issues and hasten this transition.
Nevertheless, the commentaries raised several challenges,
which we address here.

Regarding the general proposal of incorporating
rational or computational principles into mechanistic
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modeling, Anderson argues that computational-level
modeling is incoherent, and in fact he questions the very
existence of a computational level of analysis on grounds
that the brain was not designed top-down. Unlike compu-
ter programs, brain function emerged through self-organ-
ization. Anderson suggests that the brain does not perform
calculations any more than other objects compute their
dynamics. We believe this position mischaracterizes com-
putational-level modeling. Just as physical laws of motion
are useful for understanding object dynamics, compu-
tational theories can be informative about cognitive behav-
ior even if they do not capture the internal workings of the
brain (notwithstanding our various other criticisms). The
question of whether a level of explanation “exists” in the
system being modeled is an ontological red herring in
our view, and it has little bearing on whether the expla-
nations are scientifically useful. If certain rational prin-
ciples can help to explain a wide range of behaviors (e.g.,
see Chater et al.’s example of explaining away), then
those principles have contributed to scientific understand-
ing. However, we certainly agree with Anderson that the
rational principles must be suitably grounded and con-
strained, and the additional assumptions needed to
explain the data (e.g., regarding goals and hypotheses)
must be recognized and scrutinized as well.

Although rational analysis and computational-level
modeling are often identified, Fernbach & Sloman
point out that they are not the same. Rational models
explain behavior by appeal to optimality, whereas compu-
tational models describe the function of behavior regard-
less of whether it is optimal. In practice, most rational
models are computational because they only consider
optimality of behavior, rather than of the behavior
together with the system that produces it. However,
Markman & Otto observe that restricting to behavior
alone produces an incomplete definition of rationality,
because it ignores factors like time and metabolic cost.
Thus, a complete rational account of cognition should
take mechanism into account (see target article, sect. 5.3).

Nevertheless, rationality is generally viewed as a prop-
erty of the cognitive system as a whole (and its interaction
with the environment), whereas mechanistic modeling
involves iteratively decomposing phenomena into com-
ponents and showing how the components interact to
produce the whole (Herschbach & Bechtel). This con-
trast raises the question of how rational and mechanistic
explanations can be integrated. The solutions Herschbach
& Bechtel offer align well with our proposals and generally
fall into two categories. First, one can consider optimality
of one aspect of the cognitive system with respect to
knowledge or constraints provided by other components.
This approach aligns well with our call for treating Baye-
sian hypotheses as assumptions about the learner’s knowl-
edge, rather than as products of rational analysis. It also fits
with our proposal in the target article (sect. 6.2) for bring-
ing rational analysis inside mechanistic models, in order to
derive optimal behavior of one process in the context of
the rest of the model (e.g., Shiffrin & Steyvers 1998;
Wilder et al. 2009).

Second, one can study algorithms that approximate
optimal inference (e.g., Daw & Courville 2007; Sanborn
et al. 2010a). Under this approach, rational and mechanis-
tic considerations enter at different levels of analysis, and
the aim is to understand how they constrain each other.

Bowers & Davis and Herschbach & Bechtel question
this approach, arguing that it is no more effective than
mechanistic modeling alone (see also the discussion of
bounded rationality in the target article, sect. 5.4). In the
end, a mechanistic model is evaluated only by how well
it matches the data, not by how well it approximates
some rational model of the data. However, rational con-
siderations can still play an important role by constraining
the search for mechanistic explanations. Understanding
the function a mechanism serves should help guide
hypotheses about how it works. When phenomena in
different domains can be linked by a common rational
explanation, this can suggest a common underlying mech-
anism. Also, understanding the relationship between a
mechanistic model and a rational analysis, in terms of
both how the model implements and how it deviates
from the optimal solution, can help to identify which
aspects of the model are necessary for its predictions.
This approach can mitigate the tendency Norris warns
of for modelers to ascribe psychological reality to superflu-
ous mechanisms not entailed by the data. In these ways,
rational considerations can provide principled constraints
on development of mechanistic models. As Danks &
Eberhardt argue, integration of rational and mechanistic
models should not amount to reduction of the former to
the latter, because such an approach would relinquish
the explanatory benefits of the computational level.
Instead, rational explanations should “pull up” mechanistic
ones, in order to explain why one algorithm or implemen-
tation is more appropriate than another for a given
task. Nevertheless, questions remain of how somewhat
subjective notions of appropriateness should be incorpor-
ated into model selection.

Because the rationality metaphor is based on a math-
ematical ideal and has no physical target, it is compatible
with essentially any mechanism (target article, sects. 2.2
and 6.2). Thus, incorporating rational principles is poten-
tially fruitful within any mechanistic modeling framework.
For example, Barsalou suggests connecting the Bayesian
framework to the perceptuomotor simulation mechanisms
proposed in theories of grounded cognition. Such an
approach could fulfill our call for grounding Bayesian
hypotheses in the learner’s knowledge in an especially con-
crete way. Although we believe there is much work to do
before theories of grounded cognition can be given a rigor-
ous Bayesian interpretation, it is encouraging to see people
thinking in this direction. Based on the previous consider-
ations, one important goal in this line of research would
be to understand not just how Bayesian inference can be
implemented by simulation mechanisms, but what the
implications are of this rational interpretation for the
details of how these simulation mechanisms should operate.

Concerning the opposite connection, of mechanistic
implications for rational analysis, Chater et al. claim
that studying cognition at the algorithmic level cannot
provide insight into the computational level (e.g., into
the purpose the algorithm). On the contrary, investigating
how cognitive mechanisms deviate from rational predic-
tions can inform both what the function of the system is
and how it is carried out. For example, the experimental
results and accompanying modeling of Sakamoto et al.
(2008) indicate that categories in their task are psychologi-
cally represented in terms of central tendency and varia-
bility (implemented in their model as mean and
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variance), and that the goal of learning is to estimate these
statistics for use in classifying new items. The novel
sequential effect predicted by the model and confirmed
in the experiments arises due to cue competition effects
from learning these two statistics from joint prediction
error (Rescorla & Wagner 1972). Thus, the explanation
of the experimental results requires inference of the com-
putational goals of the learning system (i.e., the statistics to
be estimated) as well as of how those goals are
implemented.

Clarity on the status of model assumptions is as impor-
tant for mechanistic models as we have argued it is for
rational models (Norris). Norris uses the mechanistic
model of Sakamoto et al. (2008) to question whether we
advocate going too far in reifying mechanism for its own
sake. However, he acknowledges the Sakamoto et al.
model does not suffer this problem and praises its inter-
mediate level of abstractness. Indeed, our position is that
it would be pointless to commit to excess detail that does
not contribute to a model’s predictions. The model in
that study proposes that category means and variances
are learned through joint error correction, because this
mechanism is responsible for the model’s primary predic-
tion. The model makes no commitments about how the
computations behind the update rule are carried out,
because those details have no bearing on that prediction
(although they could be relevant for explaining other
data). Navarro & Perfors also criticize this model,
suggesting it gives no consideration to computational-
level issues. However, a primary principle of the model
concerns what environmental (i.e., category) statistics
people track, and the update rule used to learn them has
well-understood computational connections to least-
squares estimation. Navarro & Perfors go on to claim
that the purely rational model considered by Sakamoto
et al. is mis-specified for the task, but this comment
leads back to one of the core weaknesses of rational analy-
sis, that it depends on the learner’s assumptions about the
environment. The rational model in question is indeed
optimal for a certain class of environments, and it is
closely related to a rational model of a similar task pro-
posed by Elliott and Anderson (1995). There is certainly
a Bayesian model that will reproduce Sakamoto et al.’s
findings, based on the right choice of generative model
for the task, but this is not informative without a theory
of where those assumptions come from, or else of the
mechanisms from which they implicitly emerge. Such a
theory is not forthcoming from a fundamentalist approach,
but is it possible from enlightened approaches that con-
sider mechanism and rational principles jointly.

Finally, several commentators argue that integrative
research is not possible before technical frameworks
have been developed. Navarro & Perfors and
Edelman & Shahbazi argue that much previous funda-
mentalist research has paved the way for work that gives
real consideration to the processes and representations
underlying Bayesian models. Likewise, Sewell et al.
suggest that individual work focusing on one framework
or level of analysis is useful because the field as a whole
implements a division of labor that leads to integration.
We generally agree with this assessment, provided the
integrative work gets done. The important point is that
fundamentalist research cannot be the end goal, because
it offers little theoretical contribution on its own. Nearly

all scientific methods undergo initial technical develop-
ment before they can be used to advance theory, but the
two should not be confused. Thus, once again, the con-
clusion is that it is critical to carefully consider the contri-
bution and commitments of any model, so that one can
discriminate advances in theoretical understanding from
prerequisite technical advances.

R6. Conclusions

Bayesian methods have advanced rapidly in recent years,
offering the hope that they may help answer some of the
more difficult problems in cognitive science. As Lee elo-
quently states (see also Edelman & Shahbazi), Bayesian
inference offers a “coherent solution to the problem of
drawing inferences over structured models from sparse
and noisy data. That seems like a central challenge faced
by the mind, and so it is not surprising the metaphor has
led to insightful models of human cognition.” However,
in most cases, more clarity is needed on just what those
insights are.

Much of the current confusion arises from ambiguity in
the levels of analysis at which Bayesian models are
intended. The standard position from rational analysis
(J. R. Anderson 1990) is that a rational model is based
purely on the environment and makes no reference to
psychological constructs. Many Bayesian writings, includ-
ing some of the present commentaries (Borsboom et al.;
Chater et al.; Fernbach & Sloman; Gopnik), endorse
this position while simultaneously arguing that processes
or representations within Bayesian models should be
regarded as psychological entities. The danger with this
sort of inconsistency is that Bayesian models might
appear to say much more than they actually do, because
researchers can attribute rich psychological assumptions
to their models but be free to disavow them as merely
computational when they are contradicted by data.

Pinning down the theoretical status of Bayesian models
would help clarify their core assumptions and predictions,
thus making it easier to evaluate their scientific contri-
bution. As we have argued, when Bayesian models are
held to the computational level, they are largely vacuous.
This position, which we have labeled Bayesian Fundament-
alism, amounts to the claim that people act according to
probabilities of future events based on past events, usually
without any validation of what those probabilities actually
are. More promising is the approach we have labeled Baye-
sian Enlightenment, which involves treating some or all of a
model’s components as psychological constructs. This
approach fits well with Rehder’s proposal to drop the
“rational” label and adopt the term “probabilistic model.”
Probabilistic models still naturally incorporate rational prin-
ciples, but emphasizing the psychological realization of
these principles shifts attention to other important issues,
such as the source of and justification for the prior knowl-
edge built into the hypothesis space, which assumptions
are critical to model predictions, and how they compare
to other proposals. Pinning down the psychological commit-
ments of Bayesian models in this way clarifies what they do
and do not explain and enables them to be developed into
more complete psychological theories.

Rogers & Seidenberg note that connectionism had pro-
blems of underconstraint similar to those noted here for
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Bayesian models, but that connectionism has since become
far more productive by grounding in neuroscience. Like-
wise, Sewell et al. argue that the setbacks for connection-
ism, Behaviorism, and evolutionary psychology discussed
in our target article all led to eventual important progress
as a result of addressing noted shortcomings. We believe
the present critique has the potential to have a similar posi-
tive effect, and like these commentators, we predict Baye-
sian modeling will follow a similar path of maturation and
integration into the rest of cognitive science.
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